Skip to main content
Log in

Restoration of Coherence by Local PT-Symmetric Operator

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we mainly investigate effect of PT-symmetric operation on the dynamics of the relative entropy of coherence for a two-level system within non-Markovian environments, and put forward a feasible physical scheme to recover coherence by means of optimal PT-symmetric operation. The results show that the damaged quantum coherence can be restored to a large extent. Furthermore, the freezing phenomenon of the coherence can be detected by using the optimal PT-symmetric operation strength within the non-Markovian environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aberg, J: Quantifying superposition. arXiv:quant-ph/0612146(2006)

  2. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  3. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    ADS  Google Scholar 

  4. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    MathSciNet  MATH  ADS  Google Scholar 

  5. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    MathSciNet  MATH  ADS  Google Scholar 

  6. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    ADS  Google Scholar 

  7. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    MathSciNet  ADS  Google Scholar 

  8. Killoran, N., Steinhoff, F.E.S., Plenio, M.B.: Converting nonclassicality into entanglement. Phys. Rev. Lett. 116, 080402 (2016)

    ADS  Google Scholar 

  9. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    ADS  Google Scholar 

  10. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)

    ADS  Google Scholar 

  11. Hu, M.L., Zhou, W.: Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 (2019)

    ADS  Google Scholar 

  12. Hu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  13. Zhang, Z.Y., Liu, J.M.: Quantum correlations and coherence of polar symmetric top molecules in pendular states. Sci. Rep. 7, 17822 (2017)

    ADS  Google Scholar 

  14. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  15. Wang, D., Huang, A., Sun, W., Shi, J., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  16. Wang, D., Hu, Y., Wang, Z., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14, 2135 (2015)

    MATH  ADS  Google Scholar 

  17. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    ADS  Google Scholar 

  18. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    ADS  Google Scholar 

  19. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  20. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    MathSciNet  MATH  ADS  Google Scholar 

  21. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod.Phys. 79, 555 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  22. Gour, G., Spekkens, R.W.: Fundamental limitations for quantum and nanoscale thermodynamics. J. Phys. 10, 033023 (2008)

    Google Scholar 

  23. Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: The relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)

    ADS  Google Scholar 

  24. Brando, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)

    ADS  Google Scholar 

  25. Bowles, J., Vertesi, T., Quintino, M.T., Brunner, N.: One-way Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 200402 (2014)

    ADS  Google Scholar 

  26. Costa, A.C.S., Angelo, R.M.: Quantification of Einstein-Podolski-Rosen steering for two-qubit states. Phys. Rev. A 93, 020103(R) (2016)

    ADS  Google Scholar 

  27. Wang, Y.T., Tang, J.S., Li, C.F., et al.: Directly measuring the degree of quantum coherence using interference fringes. Phys. Rev. Lett. 118, 020403 (2017)

    MathSciNet  ADS  Google Scholar 

  28. He, Z., Zeng, H.S., Li, Y., Wang, Q., Yao, C.: Non-Markovianity measure based on the relative entropy of coherence in an extended space. Phys. Rev. A 96, 022106 (2017)

    ADS  Google Scholar 

  29. Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    ADS  Google Scholar 

  30. Chen, M., Wang, D., Ye, L.: Characterization of dynamical measurement’s uncertainty in a two-qubit system coupled with bosonic reservoirs. Phys. Lett. A 383, 977 (2019)

    ADS  Google Scholar 

  31. Chen, P., Ye, L., Wang, D.: The effect of non-Markovianity on the measurement-based uncertainty. Eur. Phys. J. D 73, 108 (2019)

    ADS  Google Scholar 

  32. Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)

    ADS  Google Scholar 

  33. Maniscalco, S., Petruccione, F.: Non-Markovian dynamics of a qubit. Phys. Rev. A 73, 012111 (2006)

    MathSciNet  ADS  Google Scholar 

  34. Dhar, H.S., Bera, M.N., Adesso, Gerardo: Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 91, 032115 (2015)

    ADS  Google Scholar 

  35. Chanda, T., Samyadeb, B.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. 366, 1–12 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  36. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    MathSciNet  MATH  ADS  Google Scholar 

  37. Chen, S., Chen, G., Chen, Y.: Increase of entanglement by local PT-symmetric operations. Phys. Rev. A 90, 054301 (2014)

    ADS  Google Scholar 

  38. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2006)

    MathSciNet  ADS  Google Scholar 

  40. Sergi, A., Zloshchastiev, K.G.: Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments. Int. J. Mod. Phys. B 27, 1345053 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Sergi, A., Zloshchastiev, K.G.: Time correlation functions for non-Hermitian quantum systems. Phys. Rev. A 91, 062108 (2015)

    ADS  Google Scholar 

  42. Lee, Y.C., Hsieh, M.H., Flammia, S.T., Lee, R.K.: Local PT-symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014)

    ADS  Google Scholar 

  43. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  44. Bromley, T.R., Cianciaruso, M., Adesso1, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

  45. Hu, M.L., Fa, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 11575001, 61601002 and 11847020), Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139) and Natural Science Foundation of Education Department of Anhui Province (Grant No. KJ2016SD49), and also the fund from CAS Key Laboratory of Quantum Information (Grant No. KQI201701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, XG., Sun, WY., Wang, D. et al. Restoration of Coherence by Local PT-Symmetric Operator. Int J Theor Phys 58, 4184–4193 (2019). https://doi.org/10.1007/s10773-019-04284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04284-4

Keywords

Navigation