Skip to main content
Log in

Designing Secure Quantum Key Agreement Protocols Against Dishonest Participants

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum key agreement (QKA) aims to negotiate a secure and consistent key among several participants. In this paper, we find that a type of QKA protocol is not secure when a participant is dishonest. He can make the honest participants obtain wrong final keys, which may lead to serious consequences. To resist such attacks, we design a defense strategy by introducing a trusted third party. The theoretical analysis results show that our defense strategy not only can detect the dishonest participant’s attacks, but also can identify who is dishonest. Finally we design an optical platform for participants, and show that both our attack and defense strategies are feasible with current technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal processing, pp 175–179, Bangalore (1984)

  2. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  3. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Jiang, D., Chen, Y., Gu, X., Xie, L., Chen, L.: Deterministic secure quantum communication using a single d-level system. Sci. Rep. 7, 44934 (2017)

    Article  ADS  Google Scholar 

  5. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Int. J. Quant. Inf. 3(supp01), 143–143 (2008)

    Article  Google Scholar 

  6. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  7. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

  8. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  9. Gordon, K.J., Fernandez, V., Buller, G.S., Rech, I., Cova, S.D., Townsend, P.D.: Quantum key distribution system clocked at 2 GHz. Opt. Express 13(8), 3015–3020 (2005)

    Article  ADS  Google Scholar 

  10. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    Article  ADS  Google Scholar 

  11. Wang, S., Chen, W., Guo, J.F., Yin, Z.Q., Li, H.W., Zhou, Z., Guo, G.C., Han, Z.F.: 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37(6), 1008–1010 (2012)

    Article  ADS  Google Scholar 

  12. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  Google Scholar 

  13. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  14. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quant. Inf. Process 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quant. Inf. Process. 13(11), 2391–2405 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using bell states and bell measurement. Quant.Inf. Process 42(4), 1–10 (2017)

    MATH  Google Scholar 

  17. Gu, J., Hwang, T.: Improvement of “Novel Multiparty Quantum Key Agreement Protocol with GHZ States”. Int. J. Theor. Phys. 56(10), 1–9 (2017)

    Article  MathSciNet  Google Scholar 

  18. Cao, H., Ma, W.: Multi-party traveling-mode quantum key agreement protocols immune to collusive attack. Quantum Inf. Process 17(9), 219 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Cao, H., Ma, W.: Efficient multi-party quantum key agreement protocol based on nonorthogonal quantum entangled pairs. Laser Phys. Lett. 15(9), 095201 (2018)

    Article  ADS  Google Scholar 

  20. Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7, 45046 (2017)

    Article  ADS  Google Scholar 

  21. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Yu, K.F., Yang, C.W., Hwang, T., Li, C.M., Gu, J.: Design of quantum key agreement protocols with strong fairness property. arXiv:quant-ph/1510.02353v2 (2017)

  23. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using bell states and bell measurement. Quantum Inf. Process 42 (4), 1–10 (2017)

    ADS  MATH  Google Scholar 

  24. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J,. Quant. Inf. 15(3), 1750018 (2017)

    Article  MathSciNet  Google Scholar 

  25. Cai, T., Jiang, M., Cao, G.: Multi-party quantum key agreement with five-qubit brown states [J]. Quantum Inf. Process 17(5), 103 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Min, S.Q., Chen, H.Y., Gong, L.H.: Novel multi-party quantum key agreement protocol with G-like States and Bell States. Int. J. Theor. Phys. 57(6), 1811–1822 (2018)

    Article  MathSciNet  Google Scholar 

  27. Wang, S.S., Xu, G.B., Liang, X.Q., Wu, Y.L.: Multiparty quantum key agreement with four-qubit symmetric W state. Int. J. Theor. Phys. 57(12), 3716–3726 (2018)

    Article  MathSciNet  Google Scholar 

  28. Yin, X.R., Ma, W.P.: Multiparty quantum key agreement based on three-photon entanglement with unidirectional qubit transmission. Int. J. Theor. Phys. 58(2), 631–638 (2019)

    Article  Google Scholar 

  29. Zhao, X.Q., Zhou, N.R., Chen, H.Y., Gong, L.H.: Multiparty quantum key agreement protocol with entanglement swapping. Int. J. Theor. Phys., 1–15 (2018)

  30. Huang, W., Su, Q., Liu, B., He, Y.H., Fan, F., Xu, B.J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7(1), 15264 (2017)

    Article  ADS  Google Scholar 

  31. Abulkasim, H., Farouk, A., Alsuqaih, H., Hamdan, W., Hamad, S., Ghose, S.: Improving the security of quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quant. Inf. Process 17(11), 316 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on “multiparty quantum key agreement with single particles”. Quant. Inf. Process 12(11), 3411–3420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.j.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  34. Lin, S., Guo, G.D., Xu, Y.Z., Sun, Y., Liu, X.F.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(6), 062343 (2016)

    Article  ADS  Google Scholar 

  35. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  36. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  37. Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private bell state. Opt. Commun. 282(12), 2460–2463 (2009)

    Article  ADS  Google Scholar 

  38. Xiu, X.M., Dong, H.K., Dong, L., Gao, Y.J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282(12), 2457–2459 (2009)

    Article  ADS  Google Scholar 

  39. Nguyen, B.A.: Quantum exam. Phys. Lett. A 350(3), 174–178 (2006)

    Article  ADS  Google Scholar 

  40. Qin, S.J., Gao, F., Guo, F.Z., Wen, Q.Y.: Comment on “two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair”. Phys. Rev. A 82(82), 036301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Key Research and Development Program of China (NO. 2017YFA0303700), the Major Program of National Natural Science Foundation of China (No. 11690030, 11690032), the National Natural Science Foundation of China (No. 61771236), and the Excellence Research Program of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Wc., Yang, Yk., Jiang, D. et al. Designing Secure Quantum Key Agreement Protocols Against Dishonest Participants. Int J Theor Phys 58, 4093–4104 (2019). https://doi.org/10.1007/s10773-019-04275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04275-5

Keywords

Navigation