Skip to main content
Log in

Dynamics of Atomic Entanglement in Double Jaynes-Cummings Models Containing Λ-Type Three-Level Atoms with the Dissipation of Two Cavities

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider two separated single mode dissipative cavities each containing a Λ-type three-level atom. The fields in cavities are both initially prepared in the coherent states, and the two Λ-type three-level atoms are initially prepared in the state \(|{\Psi }\rangle =\frac {1}{\sqrt {2}}(|ee\rangle +|gg\rangle )\). The result shows that, the entanglement between the two Λ-type three-level atoms decays to a steady value after a period of time of oscillations. And compared with entanglement of two-level atoms, the entanglement of the Λ-type three-level atoms is more stable and robust. We also show the impact of some parameters on the steady entanglement between the two atoms and the entanglement decreases most slowly for \(\varsigma \rightarrow 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Charles, H.B., Gilles, B., Claude, C., et al.: . Phys Rev Lett. 70, 1895 (1993)

    Article  MathSciNet  Google Scholar 

  2. Artur, K.E.: Quantum Crytography Based on Bell’s Theorem [J]. Phys Rev Lett. 67, 661 (1991)

    Article  MathSciNet  Google Scholar 

  3. Luo, Z.C., Devetak, I.: Efficiently implementable codes for quantum key expansion [J]. Phys. Rev. A. 75, 010303 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Graeme, S., John, A.S.: Degenerate quantum codes for Pauli channels [J]. Phys. Rev. Lett. 98, 030501 (2007)

    Article  Google Scholar 

  5. Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum secure direct communication network with Einstein Podolsky Rosen pairs [J]. Phys. Lett. A. 359, 359–365 (2006)

    Article  ADS  Google Scholar 

  6. Tycho, S., Harald, W.: Realizable universal quantum logic gates [J]. Phys. Rev. Lett. 74, 4087–4090 (1995)

    Article  MathSciNet  Google Scholar 

  7. Li, S.B., Xu, J.B.: . Phys. Rev. A. 72, 022332 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Li, G.X., Allaart, K., Lenstra, D: . Phys Rev A. 69, 055802 (2004)

    Article  ADS  Google Scholar 

  9. Duan, L.M., Guo, G.C.: . Phys. Rev. Lett. 79, 1953 (1997)

    Article  ADS  Google Scholar 

  10. Lidar, D.A., Chuang, I.L., Whaley, K.B.: . Phys Rev Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  11. Sancho, P.: Entanglement, identity, and disentanglement in two-atom spontaneous emission [J]. Phys. Rev. A. 95, 032116 (2017)

    Article  ADS  Google Scholar 

  12. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Radiatiove process of two entanglement atom in desitter spacetime [J]. Phys. Rev. D. 97, 105030 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Yang, Y.Q., Hu, J.W., Yu, H.W.: entanglement dynamics for uniformly accelerrated two-level atoms coupled with electromagnetic vacuum fluctuations [J]. Phys. Rev. A. 94, 032337 (2016)

    Article  ADS  Google Scholar 

  14. Jacob, P., Lvaylo, S., Madjarov, A.C, Manuel, E: 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays [J]. Phys. Rev. Lett. 122, 173201 (2019)

    Article  Google Scholar 

  15. Alexandre, E., Vasiliy, M., Thomas, C., Leonid, A., et al.: Enhanced magnietic sensitivity with non-Gaussian quantum fluctuations [J]. Phys. Rev. Lett. 122, 173601 (2019)

    Article  Google Scholar 

  16. Michael, M., Llya, S., Francesco, P.: Dynamics and thermalization in a simple mesoscopic fermionic bath[J]. Phys. Rev. A. 99, 052102 (2019)

    Article  ADS  Google Scholar 

  17. Isabel, S., Gunnar, B.: . Phys. Rev. A. 76, 042313 (2007)

    Article  Google Scholar 

  18. Stanley, C., Reid, M.D., Ficek, Z.: Entanglement evolution of two remote and non-identical Jaynes-Cummings atoms. J. Phys. 42, 065507 (2009)

    ADS  Google Scholar 

  19. Chen, Q.H., Yang, Y., Liu, T., Wang, K.L.: . Phys. Rev. A. 82, 052306 (2010)

    Article  ADS  Google Scholar 

  20. Cui, H.P., Li, J., Jin, L., Li, J.G.: . Commun. Theor. Phys. 51, 509–513 (2009)

    Article  ADS  Google Scholar 

  21. Zhou, B.J., Liu, X.J., Fang, M.F., et al: Information entropy squeezing of the atom of an arbitrary initial state via the two—photon process[J]. Acta Phys. Sin. 55, 704–709 (2006)

    Google Scholar 

Download references

Acknowledgments

Projects supported by the natural science foundation of Guangdong province(Grants No.2015A030310354), the Foundation of Excellent-Young-Backbone Teacher of Guangdong Ocean University (Grants No.HDYQ2017005), the projection of characteristic innovation(Grants No.Q18267) and the scholar of south China sea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Huang, J. Dynamics of Atomic Entanglement in Double Jaynes-Cummings Models Containing Λ-Type Three-Level Atoms with the Dissipation of Two Cavities. Int J Theor Phys 58, 4033–4041 (2019). https://doi.org/10.1007/s10773-019-04270-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04270-w

Keywords

Navigation