Skip to main content
Log in

A Note on the Relationship Between Genuinely Coherence and Generalized Entanglement Monotones

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We find a one to one mapping between genuinely incoherent operations and special one-way local operations and classical communication(LOCC) for density matrices with full rank. We also define “generalized entanglement monotones” and “genuinely coherence monotones” under special one-way LOCC and genuinely incoherent operations respectively. Any entanglement monotone proposed by Vidal et al. is a generalized entanglement monotone. Any coherence monotone under incoherent operations is a genuinely coherence monotone. Furthermore, we clarify the relationship between generalized entanglement monotones and genuinely coherence monotones. We demonstrate that any generalized entanglement monotone of bipartite pure state is the lower bound of a suitable genuinely coherence monotone; any genuinely coherence monotone of a quantum state is the generalized entanglement monotone of the corresponding maximally correlated state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  3. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  4. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Aberg, J.: Quantifying superposition, arXiv:quant-ph/0612146(2006)

  6. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  7. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  8. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  9. Hu, M.L., Hu, X.Y., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  10. Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    Article  ADS  Google Scholar 

  11. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  12. Lostaglio, M., Jennings, D., Rudolph, T.: Thermodynamic resource theories, non-commutativity and maximum entropy principles. New J. Phys. 19, 043008 (2017)

    Article  ADS  Google Scholar 

  13. Micadei, K., Rowlands, D.A., Pollock, F.A., Céleri, L.C., Serra, R.M., Modi, K.: Coherent measurements in quantum metrology. New J. Phys. 17, 023057 (2015)

    Article  ADS  Google Scholar 

  14. Lloyd, S.: Quantum coherence in biological systems. J. Phys.: Conf. Ser. 302, 012037 (2011)

    Google Scholar 

  15. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1–51 (2007)

    MathSciNet  MATH  Google Scholar 

  16. de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A 50, 045301 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  17. Brandão, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  18. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  19. Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A: Math. Theor. 50, 285301 (2017)

    Article  MathSciNet  Google Scholar 

  20. Zhu, H., Ma, Z., Cao, Z., Fei, S.-M., Vedral, V.: Operational one-to-one mapping between coherence and entanglement measures. Phys. Rev. A 96, 032316 (2017)

    Article  ADS  Google Scholar 

  21. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    Article  ADS  Google Scholar 

  22. Chitambar, E., Gour, G.: Comparision of incoherent operations and measures of coherence. Phys. Rev. A 94, 052336 (2016)

    Article  ADS  Google Scholar 

  23. Vidal, G.: Entanglement monotones. J. Modern Opt. 47, 355 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  24. Du, S., Bai, Z., Qi, X.: Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 15, 1307 (2015)

    MathSciNet  Google Scholar 

  25. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  26. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  27. Gour, G.: Family of concurrence monotones and its applications. Phys. Rev. A 71, 012318 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  28. Chin, S.: Generalized coherence concurrence and path distinguishability. J. Phys. A: Math. Theor. 50, 475302 (2017)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC No.11775306, and 11701568; the Fundamental Research Funds for the Central Universities Grants No. 17CX02033A and 19CX02050A; the Shandong Provincial Natural Science Foundation No.ZR2016AQ06, and ZR2017BA019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Wang, Z., Wang, J. et al. A Note on the Relationship Between Genuinely Coherence and Generalized Entanglement Monotones. Int J Theor Phys 58, 3998–4007 (2019). https://doi.org/10.1007/s10773-019-04266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04266-6

Keywords

Navigation