Skip to main content
Log in

Continuous Variable Quantum Secret Sharing with Chinese Remainder Theorem

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Motivated by the structure characteristics of Chinese Remainder Theorem(CRT), a continuous variable quantum secret sharing scheme is proposed to ensure the security of the network-based communication system. The initial secret is decomposed and recovered by solving the equations of CRT which provides various threshold structures to enhance the universality, flexibility and practicability of the scheme. The shares are encoded to two-mode squeezed vacuum state by displacement operation for secret distributing. Compared with the discrete variable quantum secret sharing, this scheme can increase the transmission capacity due to the improved data-processing for quantum state generation, manipulation, and detection. The security analysis is elucidated by calculating the bit error rates(BERs) under different conditions and it demonstrates that the scheme has the capability to protect secrets from eavesdropping of dishonest players no matter with the channel transmission efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  ADS  Google Scholar 

  3. Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  5. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  6. Zhang, Z.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1–2), 55–58 (2006)

    Article  ADS  Google Scholar 

  7. Qin, H., Tso, R.: Efficient quantum secret sharing based on special multi-dimensional GHZ state. Opt. Quant. Electron. 50(4), 167 (2018)

    Article  Google Scholar 

  8. Khakbiz, P., Asoudeh, M.: Sequential quantum secret sharing in noisy environments. Quantum Inf. Process 18(1), 11 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  9. Guo, Y., Liao, Q., Huang, D., Zeng, G.: Quantum relay schemes for continuous-variable quantum key distribution. Phys. Rev. A 95, 042326 (2017)

    Article  ADS  Google Scholar 

  10. Guo, Y., Xie, C., Huang, P., Li, J., Zhang, L., Huang, D., Zeng, G.: Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution. Phys. Rev. A 97(5), 052326 (2018)

    Article  ADS  Google Scholar 

  11. Guo, Y., Ye, W., Zhong, H., Liao, Q.: Continuous-variable quantum key distribution with non-Gaussian quantum catalysis. Phys. Rev. A 99(3), 032327 (2019)

    Article  ADS  Google Scholar 

  12. Vaidman, L.: Teleportation of quantum state. Phys. Rev. A 49(2), 1473 (1994)

    Article  ADS  Google Scholar 

  13. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80(4), 869 (1998)

    Article  ADS  Google Scholar 

  14. Furusawa, A., Sørensen, J.L., Braunstein, S.L., et al.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  15. Lloyd, S., Braunstein, S.L.: Quantum Computation over Continuous variables//Quantum Information with Continuous Variables, pp 9–17. Springer, Dordrecht (1999)

    Book  Google Scholar 

  16. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Modern Phys. 90(1), 015002 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  17. Feng, Y., Shi, R., Zhou, J., Liao, Q., Guo, Y.: Quantum byzantine agreement with tripartite entangled states. Int. J. Theor. Phys., 1–17 (2019)

  18. Feng, Y., Shi, R., Guo, Y.: Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states. Chin. Phy. B 27(2), 020302 (2018)

    Article  ADS  Google Scholar 

  19. Guo, Y., Feng, Y., Zeng, G.: Quantum anonymous voting with unweighted continuous-variable graph states. Quantum. Inf. Process 15(8), 3327–3345 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  20. Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65(4), 042310 (2002)

    Article  ADS  Google Scholar 

  21. Lance, A.M., Symul, T., Bowen, W.P., et al.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5(1), 4 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  22. Zhou, N., Song, H., Gong, L.: Continuous variable quantum secret sharing via quantum teleportation. Int. J. Theor. Phys. 52(11), 4174–4184 (2013)

    Article  MathSciNet  Google Scholar 

  23. Zhou, Y., Yu, J., Yan, Z., et al.: Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett. 121(15), 150502 (2018)

    Article  ADS  Google Scholar 

  24. Shi, R., Su, Q., Guo, Y., et al.: Quantum secret sharing based on chinese remainder theorem. Commun. Theor. Phys. 55(4), 573 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  25. Guo, Y., Zhao, Y.: High-efficient quantum secret sharing based on the Chinese remainder theorem via the orbital angular momentum entanglement analysis. Quantum Inf. Process 12(2), 1125–1139 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  26. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inform. Theory 29(2), 208–210 (1983)

    Article  MathSciNet  Google Scholar 

  27. He, G., Zhu, J., Zeng, G.: Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 73(1), 012314 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61401519, 61872390, 61871407), the Natural Science Foundation of Hunan Province (2017JJ3415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Liao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Liao, Q., Geng, J. et al. Continuous Variable Quantum Secret Sharing with Chinese Remainder Theorem. Int J Theor Phys 58, 3986–3997 (2019). https://doi.org/10.1007/s10773-019-04265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04265-7

Keywords

Navigation