Skip to main content
Log in

Quantum Selective Encryption for Medical Images

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

To trade security off for computational complexity, Selective Encryption (SE) in Image Processing denotes an approach which is capable of encrypting an image partially. In other words, it is aimed at turning the visually most important parts of images into meaningless ones, ignoring unimportant regions to have a computationally-efficient technique. Based on BRQI images, in this paper, a novel quantum selective encryption method for medical images is investigated. ROI (Region of Interest) tends to be the most vital part of medical images, which should be protected during the transmissions. The proposed method encrypts this region effectively by manipulating the bitplanes of the images according to a key. Experimental results encompassing correlation of adjacent pixels, histogram analysis and entropy rate analyzed in MATLAB environment demonstrate a good performance. Furthermore, regarding a BRQI image of 2n pixels, the time complexity is not more than O(m), where m is length of the key sequence. On no condition does it depend on size of images, bringing about being far more time-efficient compared to its classical counterpart and even earlier studied works found in the literature (full-encryption ones). To the best of our knowledge, this is the first method to introduce a quantum selective image encryption method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Norcen, R., Podesser, M., Pommer, A., Schmidt, H.P., Uhl, A.: Confidential storage and transmission of medical image data. Comput. Biol. Med. 33(3), 277–292 (2003)

    Google Scholar 

  2. Nazneen, M.G., Banu, S., Tabassum, Z., Fatima, K., Shariff, A.: Selective bitplane encryption for secure transmission of image data in mobile environment. Int. J. Sci. Technol. Res. 2(6), 92–96 (2013)

    Google Scholar 

  3. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process 15(1), 1–35 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Dirac, P.A.M.: The principles of quantum mechanics (No. 27). Oxford University Press (1981)

  5. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, vol. 5105, p. 134147 (2003)

  6. Latorre, J.: Image Compression and Entanglement. arXiv:quant-ph/0510031 (2005)

  7. Le, P., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process 10(1), 6384 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Info. 17(3), 404417 (2013)

    Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: A Novel enhanced quantum representation of digital images. Quantum Inf. Process 12(8), 2833–2860 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process 12(9), 31033126 (2013)

    ADS  MathSciNet  Google Scholar 

  11. Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-Green-Blue multi-channel quantum representation of digital images. Optik-International Journal for Light and Electron Optics 128, 121–132 (2017)

    Google Scholar 

  12. Sang, J.Z., Wang, S., Li, Q.: A novel quantum representation for color digital images. Quantum Inf. Process 16(2), 42 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Li, H.S., Chen, X., Xia, H.Y., Liang, Y., Zhou, Z.: A quantum image representation based on bitplanes. IEEE Access (2018)

  14. Iliyasu, A., Le, P., Dong, F., Hitora, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, W., Gao, F., Liu, B., Jia, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Song, X., Wang, S., Liu, S., Abd El-Latif, A., Niu, X.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(2), 3689–3706 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Heidari, S., Naseri, M.: A novel LSB based quantum image watermarking. Int J Theor Phys 55(10), 4205–4218 (2016)

    MATH  Google Scholar 

  18. Naseri, M., Heidari, S., et al.: A new secure quantum watermarking scheme. Optik international Journal for Light and Electron Optics 139, 77–86 (2017)

    Google Scholar 

  19. Heidari, S., Gheibi, R., Houshmand, M., Nagata, K.: A robust blind quantum copyright protection method for colored images based om owner’s signature. Int. J. Theor. Phys. 56(8), 2562–2578 (2017)

    MATH  Google Scholar 

  20. Heidari, S., Naseri, M., Gheibi, R., Baghfalaki, M., Pourarian, M.R., Farouk, A.: A new quantum watermarking based on quantum wavelet transforms. Commun. Theor. Phys. 67(6), 732–742 (2017)

    ADS  MathSciNet  Google Scholar 

  21. Zhou, R.G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process 9, 16 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Luo, G., Zhou, R.G., Hu, W., Luo, J., Liu, X., Ian, H.: Enhanced least significant qubit watermarking scheme for quantum images. Quantum Inf. Process 17 (11), 299 (2018)

    ADS  MATH  Google Scholar 

  23. Wang, S., Sang, J., Song, X., Niu, X.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)

    Google Scholar 

  24. Abd-El-Atty, B., El-Latif, A.A.A., Amin, M.: New quantum image steganography scheme with Hadamard transformation. In: International Conference on Advanced Intelligent Systems and Informatics, pp 342–352. Springer, Cham (2016)

    Google Scholar 

  25. AL-Salhi, Y.E., Lu, S.: Quantum image steganography and steganalysis based on LSQu-blocks image information concealing algorithm. Int. J. Theor. Phys. 55(8), 3722–3736 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on moir pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    MATH  Google Scholar 

  27. Jiang, N., Zhao, N., Wang, L.: LSB Based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2016)

    MATH  Google Scholar 

  28. Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colorede quantum images. Quantum Inf. Process 16(10), 242 (2017)

    ADS  MATH  Google Scholar 

  29. Heidari, S., Pourarian, M.R., Gheibi, R., Naseri, M., Houshmand, M.: Quantum redgreenblue image steganography. Int. J. Quantum Inform. 15(05) (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    MathSciNet  Google Scholar 

  31. Song, X.H., Wang, S., El-Latif, A.A.A., Niu, X.M.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process 13(8), 1765–1787 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process 14(4), 1193–1213 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Gong, L.H., He, X.T., Cheng, S., Hua, T.X., Zhou, N.R.: Quantum image encryption algorithm based on quantum image XOR operations. Int. J. Theor. Phys. 55(7), 3234–3250 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Zhou, N., Hu, Y., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process 16(6), 164 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Wang, J., Geng, Y.C., Han, L., Liu, J.Q.: Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys., 1–15 (2018)

  36. El-Latif, A.A.A., Abd-El-Atty, B., Talha, M.: Robust encryption of quantum medical images. IEEE Access 6, 1073–1081 (2018)

    Google Scholar 

  37. Zhou, N., Chen, W., Yan, X., Wang, Y.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process 17(6), 137 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Zhou, N., Yan, X., Liang, H., Tao, X., Li, G.: Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system. Quantum Inf. Process 17(12), 338 (2018)

    ADS  MATH  Google Scholar 

  39. Gong, L., Qiu, K., Deng, C., Zhou, N.: An optical image compression and encryption scheme based on compressive sensing and RSA algorithm. Opt. Lasers Eng. 121, 169–180 (2019)

    Google Scholar 

  40. Jiang, N., Wu, W.Y., Wang, L.: The quantum realizition of Arnold and Fibonacci image scrambling. Quantum Inf. Process 13(5), 1223–1236 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2458 (2014)

    MATH  Google Scholar 

  42. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process 13(7), 1545–1551 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image Gray-code and bit-plane scrambling. Quantum Inf. Process 14(5), 1717–2734 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Heidari, S., Vafaei, M., Houshmand, M., Tabatabaey-Mashadi, N.: A dual quantum image scrambling method. Quantum Inf. Process. 18(1) (2019)

  45. Jiang, N., Dang, Y., Wang, J.: Qauntum image matching. Quantum Inf. Process. 15(9), 3543–3572 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Jiang, N., Dang, Y., Zhao, N.: Quantum image location. Int. J. Theor. Phys. 55(10), 4501–4512 (2016)

    MATH  Google Scholar 

  47. Yuan, S., Mao, X., Zhou, J., Wang, X.: Quantum image filtering in the spatial domain. Int. J. Theor. Phys., 1–17 (2017)

  48. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: A quantum algorithm of constructing image histogram. World Acad. Sci. Eng. Technol 7(5), 610–613 (2013)

    Google Scholar 

  49. Zhou, R.G., Liu, X., Zhu, C., Wei, L., Zhang, X., Ian, H.: Similarity analysis between quantum images. Quantum Inf. Process 17(6), 121 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Naseri, M., Heidari, S., Gheibi, R., Gong, L.H., Raji, M.A., Sadri, A.: A novel quantum binary images thining algorithm: a quantum version of the hilditch’s algorithm. Optik-international Journal for Light and Electron Optics 131, 678–686 (2017)

    Google Scholar 

Download references

Acknowledgements

Acknowledging support of Kermanshah Branch, Young Researchers and Elite club, IRAN, the first author would like to thank Besharat Rabiei for her interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mosayeb Naseri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, S., Naseri, M. & Nagata, K. Quantum Selective Encryption for Medical Images. Int J Theor Phys 58, 3908–3926 (2019). https://doi.org/10.1007/s10773-019-04258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04258-6

Keywords

Navigation