Skip to main content
Log in

An Efficient Quantum Sealed Bidding Auction Scheme Based on the Correlation of Genuine Five-Qubit Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, an efficient quantum sealed bidding auction scheme based on genuine five-qubit entangled state is proposed. The scheme utilizes the correlation of quantum entangled states to transmit bidding information. It can use an entangled state to transmit two bits of bidding information, which greatly improves the transmission efficiency. In order to avoid collusion between bidders and auctioneer, we introduce a semi-trusted third party Trent. His supervision during the whole auction process can help participants trust each other and reduce the possibility of internal attacks. Finally, the security of the scheme is proved, and the scheme is more economical and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G, Tittel, W., et al.: Quantum cryptography. Rev. Mod. phys. 74(1), 145–195 (2001)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computer Systems and Signal Processing, Bangalore, pp. 175–179 (1984)

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  7. Chen, X.B., Wang, T.Y., Du, J.Z., et al.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6(3), 543–551 (2008)

    Article  Google Scholar 

  8. Chen, X.B., Wen, Q.Y., Guo, F.Z., et al.: Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 6(4), 899–906 (2008)

    Article  Google Scholar 

  9. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A. 61(4), 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chen, X.B., Niu, X.X., Zhou, X.J., et al.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12(1), 365–380 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ma, T.H., Zhou, J.J., Tang, M.L., Tian, Y., Al-Dhelaan, A., Al-Rodhaan, M., Lee, S.: Social network and tag sources based augmenting collaborative recommender system. IEICE Trans. Inf. Syst. 98(4), 902–910 (2015)

    Article  Google Scholar 

  13. Xia, Z., Wang, X., Sun, X., et al.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)

    Article  Google Scholar 

  14. Fu, Z., Sun, X., Liu, Q., et al.: Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Inf. Syst. 98(1), 190–200 (2015)

    Article  Google Scholar 

  15. Pan, Z., Zhang, Y., Kwong, S.: Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans. Broadcast. 61 (2), 166–176 (2015)

    Article  Google Scholar 

  16. Xie, S., Wang, Y.: Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Pers. Commun. 78(1), 231–246 (2014)

    Article  Google Scholar 

  17. Kudo, M.: Secure electronic sealed-bid auction protocol with public key cryptography. IEICE Trans. Fundamentals 81(1), 20–27 (1998)

    MathSciNet  Google Scholar 

  18. Juels, A., Szydlo, M.: A two-server, sealed-bid auction protocol. International Conference on Financial Cryptography 2357, 72–86 (2002)

    Article  Google Scholar 

  19. Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282(9), 1939–1943 (2009)

    Article  ADS  Google Scholar 

  20. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis and improvement of a secure quantum sealed-bid auction. Opt. Commun. 282(19), 4014–4016 (2009)

    Article  ADS  Google Scholar 

  21. Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)

    Article  ADS  Google Scholar 

  22. Zhao, Z.W., Naseri, M., Zheng, Y.Q.: Secure quantum sealed-bid auction with post-confirmation. Opt. Commun. 283(16), 3194–3197 (2010)

    Article  ADS  Google Scholar 

  23. Wang, Q.L., Zhang, W.W., Su, Q.: Revisiting “The loophole of the improved secure quantum Sealed-Bid auction with Post-Confirmation and solution”. Int. J. Quantum Inf. 53(9), 3147–3153 (2014)

    MATH  Google Scholar 

  24. Liu, W.J., Wang, H.B., Yuan, G.L., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16(7), 169 (2017)

    Article  ADS  Google Scholar 

  26. Liu, G., Zhang, J.Z., Xie, S.C.: Multiparty Sealed-Bid auction protocol based on the correlation of Four-Particle entangled state. Int. J. Theor. Phys. 57(10), 3141–3148 (2018)

    Article  Google Scholar 

  27. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A. 75(5), 052306 (2007)

    Article  ADS  Google Scholar 

  28. Laflamme, R., Miquel, C., Paz, J.P., et al.: Perfect quantum error correcting code. Phys. Rev. Lett. 77(1), 198–201 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant No. 2015JM6263, 2016JM6069), the Fundamental Research Funds for the Central Universities(Grant No. GK201402004), and the National Natural Science Foundation of China (Grant No. 61802243), the Fundamental Research Funds for the Central Universities(Grant No. 2019CSLZ001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, MM., Zhang, JZ. & Xie, SC. An Efficient Quantum Sealed Bidding Auction Scheme Based on the Correlation of Genuine Five-Qubit Entangled State. Int J Theor Phys 58, 3863–3870 (2019). https://doi.org/10.1007/s10773-019-04253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04253-x

Keywords

Navigation