Skip to main content
Log in

Multiparty Semi-Quantum Secret Sharing with d-Level Single-Particle States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

All previous semi-quantum secret sharing (SQSS) protocols have four common features: (1) they adopt product states or entangled states as quantum carriers; (2) the particles prepared by the quantum party are transmitted in a tree-type way; (3) they require the classical parties to possess the measurement capability; and (4) they are only suitable for two-level quantum system. In this paper, we generalize the SQSS concept into the d-level quantum system and propose two multiparty semi-quantum secret sharing (MSQSS) protocols with d-level single-particle states which do not require the classical parties to have the measurement capability. In the first protocol, the particles prepared by the quantum party are transmitted in a tree-type way, while in the second protocol, the particles prepared by the quantum party are transmitted in a circular way. The proposed MSQSS protocols are secure against some famous attacks, such as the intercept-resend attack, the measure-resend attack, the entangle-measure attack and the participant attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore. pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    ADS  Google Scholar 

  5. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    ADS  Google Scholar 

  6. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A. 78(2), 022321 (2008)

    ADS  Google Scholar 

  7. Zhang, C.M., Song, X.T., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)

    Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65(3), 032302 (2002)

    ADS  Google Scholar 

  9. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein- Podolsky-Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)

    ADS  Google Scholar 

  10. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B. 20(10), 100309 (2011)

    ADS  Google Scholar 

  11. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A. 358(4), 256–258 (2006)

    ADS  MATH  Google Scholar 

  12. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829–1834 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59(1), 162–168 (1999)

    ADS  Google Scholar 

  14. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    ADS  Google Scholar 

  15. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A. 61(4), 042311 (2000)

    ADS  MathSciNet  Google Scholar 

  16. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A. 324(5), 420–424 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69(5), 052307 (2004)

    ADS  Google Scholar 

  18. Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein-Podolsky- Rosen pairs. Phys. Lett. A. 340(1–4), 43–50 (2005)

    ADS  MATH  Google Scholar 

  19. Wang, T.Y., Wen, Q.Y., Chen, X.B., et al.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281(24), 6130–6134 (2008)

    ADS  Google Scholar 

  20. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284(14), 3639–3642 (2011)

    ADS  Google Scholar 

  21. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A. 310(4), 247–251 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A. 78(4), 042309 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Keet, A., Fortescue, B., Markham, D., et al.: Quantum secret sharing with qudit graph states. Phys. Rev. A. 82(6), 062315 (2010)

    ADS  Google Scholar 

  24. Qin, H., Dai, Y.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quantum Inf. Process. 16(3), 64 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A. 79(3), 032341 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6(6), 1195–1202 (2008)

    MATH  Google Scholar 

  28. Zhang, X.Z., Gong, W.G., Tan, Y.G., et al.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B. 18(6), 2143–2148 (2009)

    ADS  Google Scholar 

  29. Tan, Y.G., Lu, H., Cai, Q.Y.: Comment on “Quantum key distribution with classical Bob”. Phys. Rev. Lett. 102(9), 098901 (2009)

    ADS  MathSciNet  Google Scholar 

  30. Zou, X.F., Qiu, D.W., Li, L.Z., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A. 79(5), 052312 (2009)

    ADS  Google Scholar 

  31. Boyer, M., Mor, T.: Comment on “Semiquantum-key distribution using less than four quantum states”. Phys. Rev. A. 83(4), 046301 (2011)

    ADS  Google Scholar 

  32. Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    ADS  Google Scholar 

  33. Miyadera, T.: Relation between information and disturbance in quantum key distribution protocol with classical Alice. Int. J. Quantum Inf. 9(6), 1427–1435 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Yu, K.F., Yang, C.W., Liao, C.H., et al.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A. 91(3), 032323 (2015)

    ADS  Google Scholar 

  38. Zou, X.F., Qiu, D.W., Zhang, S.Y.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Li, Q., Chan, W.H., Zhang, S.Y.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)

    ADS  Google Scholar 

  40. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    ADS  Google Scholar 

  41. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Zhang, M.H., Li, H.F., Xia, Z.Q., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    ADS  MATH  Google Scholar 

  43. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A. 82(2), 022303 (2010)

    ADS  Google Scholar 

  44. Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Lin, J., Yang, C.W., Tsai, C.W., et al.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(5), 1350052 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Xie, C., Li, L.Z., Qiu, D.W.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Yin, A., Fu, F.: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 55(9), 4027–4035 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B. 30(10), 1650130 (2016)

    ADS  MathSciNet  Google Scholar 

  51. Tavakoli, A., Herbauts, I., Zukowski, M., et al.: Secret sharing with a single d-level quantum system. Phys. Rev. A. 92(3), 03030 (2015)

    Google Scholar 

  52. Ye, C.Q., Ye, T.Y.: Circular multi-party quantum private comparison with n-level single-particle states. Int. J. Theor. Phys. 58(4), 1282–1294 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351(1–2), 23–25 (2006)

    ADS  MATH  Google Scholar 

  54. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv: quant-ph/0508168 (2005)

  55. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A. 74, 054302 (2006)

    ADS  Google Scholar 

  56. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    ADS  MATH  Google Scholar 

  57. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  58. Gao, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on: “quantum exam”[Phys Lett A 350(2006)174]. Phys. Lett. A. 360(6), 748–750 (2007)

    ADS  Google Scholar 

  59. Guo, F.Z., Qin, S.J., Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D. 56(3), 445–448 (2010)

    ADS  Google Scholar 

  60. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret sharing protocol. Phys. Rev. A. 76(6), 062324 (2007)

    ADS  Google Scholar 

  61. Nie, Y.Y., Li, Y.H., Wang, Z.S.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12, 437–448 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Funding by the Natural Science Foundation of Zhejiang Province (Grant No.LY18F020007), the Public Welfare Project Foundation of Zhejiang Provincial Science and Technology Department (Grant No. LGG18F020006) and the Foundation of Zhejiang Provincial Education Department (Grant No. Y201737672) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan Zhi-Gang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong-Qiang, Y., Tian-Yu, Y., De, H. et al. Multiparty Semi-Quantum Secret Sharing with d-Level Single-Particle States. Int J Theor Phys 58, 3797–3814 (2019). https://doi.org/10.1007/s10773-019-04248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04248-8

Keywords

PACS

Navigation