Skip to main content
Log in

Can Quantum Particles Cross a Horizon?

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The prevalent opinion that infalling objects can freely cross a black hole horizon is based on the assumptions that the horizon region is governed by classical General Relativity and by specific singular coordinate transformations it is possible to remove divergences in the geodesic equations. However, the coordinate transformations usually used to demonstrate the geodesic completeness are of class C0, while the standard causality theory requires that the metric tensor to be at least C1. Introduction of C0-class functions leads to the appearance of the additional delta-like sources in the Einstein equations and in the equations for quantum particles. Therefore, to explore the horizon region, in addition to the classical geodesic equations, one needs to use equation of quantum particles. Applying physical boundary conditions at the Schwarzschild and Kerr event horizons, we show existence of the exponentially decay/enhanced solutions (with the complex phases) to the Klein-Gordon equation. This means that in semi-classical approximation particles probably do not enter the black hole horizon, but are absorbed/reflected by it. Then it follows that the minimal classical size of any isolated body is its horizon radius, what potentially can solve main black hole mysteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S., Penrose, R.: The Nature of Space and Time. Princeton University Press, Princeton (1996)

  2. Senovilla, J.M.M., Garfinkle, D.: The Penrose singularity theorem. Class. Quant. Grav. 32, 124008 (2015). arXiv:1410.5226 [gr-qc]

    ADS  MathSciNet  MATH  Google Scholar 

  3. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  4. Tangherlini, F.R.: Nonclassical structure of the energy-momentum tensor of a point mass source for the Schwarzschild field. Phys. Rev. Lett. 6, 147 (1961)

    ADS  Google Scholar 

  5. Heinzle, J.M., Steinbauer, R.: Remarks on the distributional Schwarzschild geometry. J. Math. Phys. 43, 1493 (2002). arXiv:gr-qc/0112047

    ADS  MathSciNet  MATH  Google Scholar 

  6. Castro, C.: The euclidean gravitational action as black hole entropy, singularities, and spacetime voids. J. Math. Phys. 49, 042501 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. Gen. Rel. Grav. 40, 1997 (2008). arXiv:gr-qc/0405109

    ADS  MATH  Google Scholar 

  8. Mitra, A.: On the non-occurrence of type I x-ray bursts from the black hole candidates. Adv. Space Res. 38, 2917 (2006). arXiv:astro-ph/0510162

    ADS  Google Scholar 

  9. Mitra, A. In: Kleinert, H., Jantzen, R.T., Ruffini, R. (eds.): Physical Implications for the Uniqueness of the Value of the Integration in the Vacuum Schwarzschild Solution, in The Eleventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories. World Scientific, Singapore (2008)

  10. Gogberashvili, M., Modrekiladze, B.: Gravitational field of a spherical perfect fluid. Eur. Phys. J. C 79, 643 (2019). arXiv:1805.03505 [physics.gen-ph]

  11. Akiyama, K., et al.: [Event horizon telescope collaboration], First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. 875, L1 (2019)

    ADS  Google Scholar 

  12. Abbott, B.P., et al.: [LIGO scientific and virgo collaborations], Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  13. Chandrasekhar, S.: The mathematical theory of black holes. Clarendon, New York (1983)

    MATH  Google Scholar 

  14. Carroll, S.: Spacetime and geometry: An introduction to general relativity. Addison-Wesley, San Francisco (2004)

    MATH  Google Scholar 

  15. Poisson, E.: A relativist’s toolkit: The mathematics of black-hole mechanics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  16. Marolf, D.: The black hole information problem: Past, present, and future. Rep. Prog. Phys. 80, 092001 (2017). arXiv:1703.02143 [gr-qc]

    ADS  Google Scholar 

  17. Giddings, S.B.: Black holes and massive remnants. Phys. Rev. D 46, 1347 (1992). arXiv:hep-th/9203059

    ADS  Google Scholar 

  18. Giddings, S.B.: Black hole information, unitarity, and nonlocality. Phys. Rev. D 74, 106005 (2006). arXiv:hep-th/0605196

    ADS  MathSciNet  Google Scholar 

  19. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: Complementarity or firewalls?. JHEP 1302, 062 (2013). arXiv:1207.3123 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  20. Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortsch. Phys. 61, 781 (2013). arXiv:1306.0533 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  21. https://www.blackholes.org, Simulating extreme space-times, 2018

  22. Ha, Y.K.: External energy paradigm for black holes. Int. J. Mod. Phys. A 33, 1844025 (2018). arXiv:1811.02890 [physics.gen-ph]

    ADS  Google Scholar 

  23. Gogberashvili, M., Pantskhava, L.: Black hole information problem and wave bursts. Int. J. Theor. Phys. 57, 1763 (2018). arXiv:1608.04595 [physics.gen-ph]

    MathSciNet  MATH  Google Scholar 

  24. Gogberashvili, M.: On the singular coordinate transformations of the Schwarzschild metric. arXiv:1809.07173 [physics.gen-ph]

  25. Minguzzi, E., Sanchez, M.: The Causal Hierarchy of Spacetimes in Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys. (Eur. Math. Soc. Publ, House, Zürich) (2008)

  26. Clarke, C.J.S.: The analysis of spacetime singularities, Cambridge Lect Notes Phys, vol. 1. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  27. García-Parrado, A., Senovilla, J.M.M.: Causal structures and causal boundaries. Class. Quant. Grav. 22, R1 (2005). arXiv:gr-qc/0501069

    ADS  MathSciNet  MATH  Google Scholar 

  28. Chruściel, P.T.: Elements of causality theory. arXiv:1110.6706 [gr-qc]

  29. Sorkin, R.D., Woolgar, E.: A causal order for spacetimes with C 0 Lorentzian metrics: Proof of compactness of the space of causal curves. Class. Quant. Grav. 13, 1971 (1996)

    ADS  MATH  Google Scholar 

  30. Oppenheimer, J.R., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455 (1939)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Lichnerowicz, A.: Théories Relativistes de la Gravitation et de l Électromagnétisme. Relativité Générale et Théories Unitaires, Masson, Paris (1955)

    MATH  Google Scholar 

  32. Synge, J.L.: Relativity: The general theory. North-Holland Publishing Company, Amsterdam (1960)

    MATH  Google Scholar 

  33. Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Rel. Grav. 30, 701 (1998). arXiv:1801.04912 [gr-qc]

    ADS  MathSciNet  MATH  Google Scholar 

  34. Dafermos, M., Luk, J.: The interior of dynamical vacuum black holes I: The C 0-stability of the Kerr Cauchy horizon. arXiv:1710.01722 [gr-qc]

  35. Klainerman, S., Szeftel, J.: Global nonlinear stability of schwarzschild spacetime under polarized perturbations. arXiv:1711.07597 [gr-qc]

  36. Khelashvili, A., Nadareishvili, T.: What is the boundary condition for the radial wave function of the Schrödinger equation?. Am. J. Phys. 79, 668 (2011). arXiv:1009.2694 [quant-ph]

    ADS  MATH  Google Scholar 

  37. Khelashvili, A., Nadareishvili, T.: Singular behavior of the Laplace operator in polar spherical coordinates and some of its consequences for the radial wave function at the origin of coordinates. Phys. Part. Nucl. Lett. 12, 11 (2015). arXiv:1502.04008 [hep-th]

    Google Scholar 

  38. Cantelaube, Y.C., Khelif, A.L.: Laplacian in polar coordinates, regular singular function algebra, and theory of distributions. J. Math. Phys. 51, 053518 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Jackson, J.D.: Classical electrodynamics. Wiley, New York (1999)

    MATH  Google Scholar 

  40. Peshkin, M., Tonomura, A.: The Aharonov-Bohm effect. Springer, Berlin (1989). Lecture Notes in Physics (Book 340)

    Google Scholar 

  41. Dixon, W.G.: The definition of multipole moments for extended bodies. Gen. Rel. Grav. 4, 199 (1973)

    ADS  MathSciNet  Google Scholar 

  42. Goldstein, H.: Classical mechanics. Addison-Wesley, New York (1950)

    MATH  Google Scholar 

  43. Motz, L., Selzer, A.: Quantum mechanics and the relativistic Hamilton-Jacobi equation. Phys. Rev. 133, B1622 (1964)

    ADS  MathSciNet  Google Scholar 

  44. Starobinskii, A.A.: Amplification of waves during reflection from a rotating ’black hole’. Sov. Phys. JETP 37, 28 (1973)

    ADS  Google Scholar 

  45. Matzner, R.A.: Scattering of massless scalar waves by a Schwarzschild ’singularity’. J. Mat. Phys. 9, 163 (1968)

    ADS  Google Scholar 

  46. Qin, Y.-P.: Exact solutions to the Klein-Gordon equation in the vicinity of Schwarzschild black holes. Sci. China: Phys. Mech. Astron. 55, 381 (2012)

    ADS  Google Scholar 

  47. Damour, T., Ruffini, R.: Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism. Phys. Rev. D 14, 332 (1976)

    ADS  Google Scholar 

  48. Sannan, S.: Heuristic derivation of the probability distributions of particles emitted by a black hole. Gen. Rel. Grav. 20, 239 (1988)

    ADS  MathSciNet  Google Scholar 

  49. Elizalde, E.: Series solutions for the Klein-Gordon equation in Schwarzschild space-time. Phys. Rev. D 36, 1269 (1987)

    ADS  Google Scholar 

  50. Srinivasan, K., Padmanabhan, T.: Particle production and complex path analysis. Phys. Rev. D 60, 024007 (1999). arXiv:gr-qc/9812028

    ADS  MathSciNet  Google Scholar 

  51. Akhmedov, E.T., Akhmedova, V., Singleton, D.: Hawking temperature in the tunneling picture. Phys. Lett. B 642, 124 (2006). arXiv:hep-th/0608098

    ADS  MathSciNet  MATH  Google Scholar 

  52. Akhmedov, E.T., Akhmedova, V., Pilling, T., Singleton, D.: Thermal radiation of various gravitational backgrounds. Int. J. Mod. Phys. A 22, 1705 (2007). arXiv:hep-th/0605137

    ADS  MATH  Google Scholar 

  53. Akhmedov, E.T., Pilling, T., Singleton, D.: Subtleties in the quasi-classical calculation of Hawking radiation. Int. J. Mod. Phys. D 17, 2453 (2008). arXiv:0805.2653 [gr-qc]

    ADS  MathSciNet  MATH  Google Scholar 

  54. Vieira, H.S., Bezerra, V.B., Muniz, C.R.: Exact solutions of the Klein-Gordon equation in the Kerr-Newman background and Hawking radiation. Ann. Phys. 350, 14 (2014). arXiv:1401.5397 [gr-qc]

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [DI-18-335/New Theoretical Models for Dark Matter Exploration].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Gogberashvili.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogberashvili, M. Can Quantum Particles Cross a Horizon?. Int J Theor Phys 58, 3711–3725 (2019). https://doi.org/10.1007/s10773-019-04242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04242-0

Keywords

Navigation