Skip to main content
Log in

How Stochastic Strictly Incoherent Operations Affect Coherence in Decoherence Channels

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we aim to investigate the freezing of quantum coherence for Bell-diagonal states by using stochastic strictly incoherence operations in non-dissipative decoherence environments. We find that quantum coherence of the Bell-diagonal states, which is subject to the stochastic strictly incoherence operations, becomes more stable. The stochastic strictly incoherent operation not only increases quantum coherence, but also keeps the quantum coherence intact in decoherence channel. It means that quantum coherence can be frozen with the growth of the noisy strength. This is because the stochastic strictly incoherence operations are free ones, this process will not produce quantum coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A. 92, 022124 (2015)

    Article  ADS  Google Scholar 

  2. Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  3. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  4. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry and thermodynamics. Phys. Rev. X. 5, 021001 (2015)

    Google Scholar 

  5. Engel, G. S.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic system. Nature 446, 782 (2007). (London)

    Article  ADS  Google Scholar 

  6. Ming, F., Wang, D., Shi, W.N., Huang, A.J., Sun, W.Y., Ye, L.: Entropic uncertainty relations in the Heisenberg XXZ model and its controlling via filtering operations. Quantum Inf. Process. 17, 89 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ming, F., Wang, D., Shi, W.N., Huang, A.J., Du, M.M., Sun, W.Y., Ye, L.:Exploring uncertainty relation and its connection with coherence under the Heisenberg spin model with the Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 17, 267 (2018)

  8. Du, M.M., Wang, D., Ye, L.: The dynamic behaviors of complementary correlations under decoherence channels. Sci. Rep. 7, 40934 (2017)

    Article  ADS  Google Scholar 

  9. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum System. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  10. Girolami, D.: Observable measure of quantum coherence in finite dimensional system. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  11. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A. 91, 042120 (2015)

    Article  ADS  Google Scholar 

  12. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, X., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102–112 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  15. Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A. 93, 060303(R) (2017)

    Article  Google Scholar 

  16. Silva, I.A., Souza, A.M., Bromley, T.R., Cianciaruso, M., Marx, R., Sarthour, R.S., Oliveira, I.S., Lo Franco, R., Glaser, S.J., deAzevedo, E.R., Soares-Pinto, D.O., Adesso, G.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)

    Article  ADS  Google Scholar 

  17. Bromley, T.R., Cianciaruso, M., Franco, R.L., Adesso, G.: Unifying approach to the quantification of bipartite correlations by bures distance. Phys. A Math. Theor. 47, 405302 (2014)

    Article  MathSciNet  Google Scholar 

  18. Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A. 88, 012120 (2013)

    Article  ADS  Google Scholar 

  19. Aaronson, B., Lo Franco, R., Compagno, G., Adesso, G.: Hierarchy and dynamics of trace distance correlations. New J. Phys. 15, 093022 (2013)

    Article  ADS  Google Scholar 

  20. Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  21. Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system environment back-action. Nat. Commun. 4, 2851 (2013)

    Article  ADS  Google Scholar 

  22. Streltsov, A., Adesso, G., Plenio, M. B.: Quantum Coherence as a Resource. Rev. Mod. Phys. 89, 041003 (2017)

  23. Liu, C.L., Guo, Y.Q., Tong, D.M.: Enhancing coherence of a state by stochastic strictly incoherence operations. Phys. Rev. A. 96, 062325 (2017)

    Article  ADS  Google Scholar 

  24. Yadin, B., Ma, D., Girolami, M., Vedral, V.: Quantum processes which do not use coherence. Phys. Rev. X. 6, 041028 (2016)

    Google Scholar 

  25. Linden, N., Massar, S., Popescu, S.: Purifying noisy entanglement requires collection measurements. Phys. Rev. Lett. 81, 3279–3282 (1998)

    Article  ADS  Google Scholar 

  26. Kent, A., et al.: Entanglement mixed states and local purification. Phys. Rev. Lett. 81, 2839 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kent, A., Linden, N., Massar, S.: Optimal entanglement enhancement for mixed states. Phys. Rev. Lett. 83, 2656–2659 (1999)

    Article  ADS  Google Scholar 

  28. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A. 54, 1838–1843 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. Baumgratz, T., Cramer, M., Plenio, M.D.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  30. Bu, A., Sing, U., Wu, J.: Catalytic coherence transformations. Phys. Rev. A. 93, 042326 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)

    Article  ADS  Google Scholar 

  32. Chang, J., Kwon, Y.: Entanglement behavior of quantum states of fermionic systems in an accelerated frame. Phys. Rev. A. 85, 032302 (2012)

    Article  ADS  Google Scholar 

  33. Shi, J.D., Xu, S., Ma, W.C., Song, X.K., Ye, L.: Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements. Quantum Inf. Process. 14, 1387–1397 (2015)

    Article  ADS  Google Scholar 

  34. Sun, W.Y., Wang, D., Shi, J.-D., Ye, L.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)

    Article  ADS  Google Scholar 

  35. Sun, W.-Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system under non-inertial frames. Quantum Inf. Process. 16, 90 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant Nos. 11575001 and 61601002, Natural Science Foundation of Education Department of Anhui Province (Grant No. KJ2016SD49), and also the fund from CAS Key Laboratory of Quantum Information (Grant No. KQI201701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YS., Wang, D. & Ye, L. How Stochastic Strictly Incoherent Operations Affect Coherence in Decoherence Channels. Int J Theor Phys 58, 3667–3676 (2019). https://doi.org/10.1007/s10773-019-04235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04235-z

Keywords

Navigation