Skip to main content
Log in

Cost Optimization Technique for Quantum Circuits

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, an attempt is made to present a method of quantum cost minimization or optimization technique for quantum reversible circuits using proposed merger rules in Exclusive Sum of Product (ESOP) method. These modified ESOP methods are used to minimize the quantum circuits. We found that the quantum cost is drastically decreased than the previous ESOP method. It will be easy to find the quantum cost and quantum gate optimized quantum circuits implementation. It will also reduce quantum error while the quantum circuit is executed in real quantum processor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing CNOT-based quantum circuits. In: Proceedings of the 39th Annual Design Automation Conference, pp. 419–424. ACM (2002)

  4. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Proceedings 2003. Design Automation Conference (IEEE Cat. No. 03CH37451), pp. 318–323. IEEE (2003)

  5. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Transactions on Design Automation of Electronic Systems (TODAES). 12(4), 42–es (2007)

    Article  Google Scholar 

  6. Maslov, D., Young, C., Miller, D.M., Dueck, G.W.: Quantum circuit simplification using templates. In: Proceedings of the Conference on Design, Automation and Test in Europe, vol. 2, pp. 1208–1213. IEEE Computer Society (2005)

  7. Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(6), 807–817 (2005)

    Article  Google Scholar 

  8. Prasad, A.K., Shende, V.V., Markov, I.L., Hayes, J.P., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM Journal on Emerging Technologies in Computing Systems (JETC). 2(4), 277–293 (2006)

    Article  Google Scholar 

  9. Lukac, Martin, Mikhail Pivtoraiko, Alan Mishchenko, and Marek Perkowski. "Automated Synthesis of Generalized Reversible Cascades Using Genetic Algorithms. (2002)

  10. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003)

    Article  Google Scholar 

  11. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)

    Article  Google Scholar 

  12. Hung, W.N.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(9), 1652–1663 (2006)

    Article  Google Scholar 

  13. Maslov, D., Miller, D.M.: Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits. IET Comput. Digit. Tech. 1(2), 98–104 (2007)

    Article  Google Scholar 

  14. Rubinstein, B.I.P.: Evolving quantum circuits using genetic programming. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1, pp. 144–151. IEEE (2001)

  15. Donald, J., Jha, N.K.: Reversible logic synthesis with Fredkin and Peres gates. ACM Journal on Emerging Technologies in Computing Systems (JETC). 4(1), 2 (2008)

    Google Scholar 

  16. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Proceedings of the 46th Annual Design Automation Conference, pp. 270–275. ACM (2009)

  17. Wille, Robert, Mehdi Saeedi, and Rolf Drechsler. "Synthesis of reversible functions beyond gate count and quantum cost." arXiv preprint arXiv:1004.4609 (2010)

  18. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: Proceedings of the 2010 Asia and South Pacific Design Automation Conference, pp. 849–854. IEEE Press (2010)

  19. Saeedi, M., Saheb Zamani, M., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM Journal on Emerging Technologies in Computing Systems (JETC). 6(4), 13 (2010)

    Google Scholar 

  20. Saeedi, M., Sedighi, M., Zamani, M.S.: A library-based synthesis methodology for reversible logic. Microelectron. J. 41(4), 185–194 (2010)

    Article  Google Scholar 

  21. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Inf. Comput. 11(1&2), 142–166 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Maslov, D., Saeedi, M.: Reversible circuit optimization via leaving the Boolean domain. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(6), 806–816 (2011)

    Article  Google Scholar 

  23. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Proceedings of the 49th Annual Design Automation Conference, pp. 36–41. ACM (2012)

  24. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Babu, H.M.H., Islam, M.R., Mostahed, S., Chowdhury, A., Chowdhury, A.R.: Synthesis of full-adder circuit using reversible logic. In: 17th international conference on VLSI design. Proceedings., pp. 757–760. IEEE (2004)

  26. Biswas, A.K., Hasan, M.M., Hasan, M., Chowdhury, A.R., Babu, H.M.H.: A novel approach to design BCD adder and carry skip BCD adder. In: 21st international conference on VLSI design (VLSID 2008), pp. 566–571. IEEE (2008)

  27. Kanth, B. Raghu, B. Murali Krishna, M. Sridhar, and VG Santhi Swaroop. "A Distinguish between Reversible and Conventional Logic Gates." (2012)

  28. Mamataj, S., Saha, D., Banu, N.: A review of reversible gates and its application in logic design. AJER. 3(4), 151–161 (2014)

    Google Scholar 

  29. Thapliyal, H., Ranganathan, N.: A new reversible design of bcd adder. In: 2011 design, Automation & Test in Europe, pp. 1–4. IEEE (2011)

  30. Feynman, R.P.: Quantum mechanical computers. Optics News. 11(2), 11–20 (1985)

    Article  Google Scholar 

  31. Sasanian, Z., Miller, D.M.: Reversible and quantum circuit optimization: a functional approach. In: International Workshop on Reversible Computation, pp. 112–124. Springer, Berlin, Heidelberg (2012)

    MATH  Google Scholar 

  32. Adnan, N.A.B., Yamashita, S., Mishchenko, A.: Reduction of quantum cost by making temporary changes to the function. IEICE Trans. Inf. Syst. 100(7), 1393–1402 (2017)

    Article  Google Scholar 

  33. Fazel, K., Thornton, M.A., Rice, J.E.: ESOP-based Toffoli gate cascade generation. In: 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 206–209. IEEE (2007)

  34. Datta, K., Rathi, G., Sengupta, I., Rahaman, H.: An improved reversible circuit synthesis approach using clustering of ESOP cubes. ACM Journal on Emerging Technologies in Computing Systems (JETC). 11(2), 15 (2014)

    Google Scholar 

  35. Maslov, Dmitri. "Reversible Logic Synthesis Benchmarks Page." http://www. cs. uvic. ca/maslov/ (2005)

  36. Saeedi, M., Saheb Zamani, M., Sedighi, M.: Moving forward: a non-search based synthesis method toward efficient cnot-based quantum circuit synthesis algorithms. In: 2008 Asia and South Pacific Design Automation Conference, pp. 83–88. IEEE (2008)

  37. Li, M., Zheng, Y., Hsiao, M.S., Huang, C.: Reversible logic synthesis through ant colony optimization. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 307–310. European Design and Automation Association (2010)

  38. Sasamal, T.N., Singh, A.K., Mohan, A.: Reversible logic circuit synthesis and optimization using adaptive genetic algorithm. Proc. Comput. Sci. 70, 407–413 (2015)

    Article  Google Scholar 

  39. Wille, R., Große, D., Dueck, G.W., Drechsler, R.: Reversible logic synthesis with output permutation. In: 2009 22nd International Conference on VLSI Design, pp. 189–194. IEEE (2009)

Download references

Acknowledgments

The authors Dr. Kunal Das, Arindam Sadhu are grateful to The SCIENCE & ENGINEERING RESEARCH BOARD (DST-SERB), Govt. of. India, for providing with the grant for accomplishment of the project under the Project FILE NO. ECR/2016/000613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Das.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, A., Sadhu, A., Das, K. et al. Cost Optimization Technique for Quantum Circuits. Int J Theor Phys 58, 3158–3179 (2019). https://doi.org/10.1007/s10773-019-04192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04192-7

Keywords

Navigation