Skip to main content

Advertisement

Log in

Novel True Random Number Generator Based Hardware Cryptographic Architecture Using Quantum-Dot Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Information processing and conventional computing are usually resource constrained; evermore they need to operate in a physically suspicious environment. Consequently, communication architectures, protocol and its security aspects have been the focus of many recent research works. Our proposal demonstrates how to amend this vulnerable circumstance through a three-stage security scheme in quantum-dot cellular automata (QCA) based nano-architecture. The primary objective of this hardware-based cryptographic architecture using QCA is to intend a distinctly secure communication architecture comprising less number of QCA cells, which enchant the comparative performance investigation along with the power-area constraints. In our proposed design the random bits are extorted from an asymmetrically arranged crossed loop TRNG where the seed circuits are used to boost the volatility of initiated number sequences as well as the distinction of the random numbers. In this work, a novel encryption-decryption prototype for a secure communication system has been implemented. The simulation results are obtained from QCADesigner tool v2.0.3, which fruitfully agreed with the industry standard. An intact evaluation of the proposed TRNG and the comparative analysis with a recent work of TRNG has been authorized by the 7.79% improvements in average energy dissipation for different Kink energy ratio. Altogether the proposed architecture and its contemporary implementation in QCA framework can be recognized by means of the advantages in 7.02% circuit complexity, 11.53% area, and 13.77% average leakage power dissipation with respect to the recent work of TRNG. Thus our proposed novel TRNG based hardware cryptographic architecture can be considered as a potential next-generation network-on-chip (NoC) realization for a large-scale cryptosystem in QCA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 11
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85(4), 541–557 (1997)

    Article  Google Scholar 

  2. Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science. 284-284(5412), 289–291 (1999)

    Article  ADS  Google Scholar 

  3. Purkayastha, T., Chattopadhyay, T., De, D., Mahata, A.: Realization of data flow in QCA tile structure circuit by potential energy calculation. Procedia Mater. Sci. 10, 353–360 (2015)

    Article  Google Scholar 

  4. Dey, A., Das, K., De, D., De, M.: Online Testable Conservative Adder Design in Quantum Dot Cellular Automata, Emerging Trends in Computing and Communication, pp. 385–393. Springer, India (2014)

    Google Scholar 

  5. Purkayastha, T., De, D., Das, K.: A novel pseudo random number generator based cryptographic architecture using quantum-dot cellular automata. Microprocess. Microsyst. 45, 32–44 (2016)

    Article  Google Scholar 

  6. DiLabio, G.A., Wolkow, R.A., Pitters, J.L., Piva, P.G.: University of Alberta and National Research Council of Canada.: Atomistic quantum dot. U.S. Patent 8,816,479 (2014)

  7. Das, K., De, D.: Novel approach to design a testable conservative logic gate for QCA implementation. In: IEEE 2nd International Advance Computing Conference (IACC), pp. 82–87 (2010)

    Google Scholar 

  8. Nayeem, N.M., Jamal, L., Babu, H.M.: Efficient reversible Montgomery multiplier and its application to hardware cryptography. J. Comput. Sci. 5(1), 49 (2009)

    Article  Google Scholar 

  9. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnology. 3, 26–31 (2004)

    Article  ADS  Google Scholar 

  10. Das, K., De, D., De, M.: Competent universal reversible logic gate design for quantum dot cellular automata. WSEAS Trans. Circuits Syst. 11, 401–411 (2012)

    Google Scholar 

  11. Liu, W., Srivastava, S., Lu, L., O'Neill, M., Swartzlander, E.E.: Are QCA cryptographic circuits resistant to power analysis attack? Nanotechnol. IEEE Trans. 11(6), 1239–1251 (2012)

    Article  ADS  Google Scholar 

  12. Amiri, M.A., Mahdavi, M., Mirzakuchaki, S.: Logic-based QCA implementation of a 4 ×4 S-box. In: 5th IEEE GCC Conference & Exhibition, pp. 1–5 (2009)

    Google Scholar 

  13. Rahimi, E., Nejad, S.M.: Secure clocked QCA logic for implementation of quantum cryptographic processors. In: Applied Electronics, IEEE, pp. 217–220 (2009)

    Google Scholar 

  14. Keikha, A., Dadkhah, C., Tehrani, M., Navi, K.: A novel design of a random generator circuit in QCA. Int. J. Comput. Appl. 35(1), 30–36 (2011)

    Google Scholar 

  15. Das, J.C., De, D.: Quantum dot-cellular automata based cipher text design for nano-communication. In: International Conference on Radar, Communication and Computing (ICRCC) (Pp. 224–229). IEEE. 224–229 (2012)

    Google Scholar 

  16. Abutaleb, M.M.: A novel true random number generator based on QCA nanocomputing. Nano Communication Networks. 17, 14–20 (2018)

    Article  Google Scholar 

  17. J Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product ciphers. In: In European Symposium on Research in Computer Security, pp. 97–110. Springer, Berlin, Heidelberg (1998)

    Google Scholar 

  18. Amiri, M.A., Mirzakuchaki, S., Mahdavi, M.: Cryptography in Quantum Cellular Automata, Cellular Automata - Innovative Modelling for Science and Engineering, Dr. Alejandro Salcido (Ed.), ISBN: 978–953–307-172-5, InTech, Available from: http://www.intechopen.com/books/cellular-automatainnovative-modelling-for-science-and engineering/cryptography-in-quantum-cellular-automata (2011)

  19. Bassham, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Leigh, S.D., Levenson, M., Vangel, M., Heckert, N.A., Banks, D.L.: A statistical test suite for random and pseudorandom number generators for cryptographic applications (No. Special Publication (NIST SP)-800–22 Rev 1a) 2010

  20. Rezaei, A., Saharkhiz, H.: Design of low power random number generators for quantum-dot cellular automata. International Journal of Nano Dimension. 7(4), 308–320 (2016)

    Google Scholar 

  21. Bucci, M., Germani, L., Luzzi, R., Trifiletti, A., Varanonuovo, M.: A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans. Comput. 52(4), 403–409 (2003)

    Article  Google Scholar 

  22. Holman, W.T., Connelly, J.A., Dowlatabadi, A.B.: An integrated analog/digital random noise source. Transactions on Circuits and Systems I: Fundamental Theory and Applications. 44(6), 521–528 (1997)

    Article  Google Scholar 

  23. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wold, K., Tan, C.H.: Analysis and enhancement of random number generator in FPGA based on oscillator rings. International Journal of Reconfigurable Computing. 4 (2009)

  25. Bayon, P., Bossuet, L., Aubert, A., Fischer, V., Poucheret, F., Robisson, B., Maurine, P.: Contactless electromagnetic active attack on ring oscillator based true random number generator. In: International Workshop on Constructive Side-Channel Analysis and Secure Design, pp. 151–166. Springer, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Schellekens, D., Preneel, B., Verbauwhede, I.: FPGA vendor agnostic true random number generator. In: 2006 International Conference on Field Programmable Logic and Applications, pp. 1–6. IEEE (2006)

  27. Tokunaga, C., Blaauw, D., Mudge, T.: True random number generator with a metastability-based quality control. IEEE J. Solid State Circuits. 43(1), 78–85 (2008)

    Article  ADS  Google Scholar 

  28. Mathew, S.K., Srinivasan, S., Anders, M.A., Kaul, H., Hsu, S.K., Sheikh, F., Agarwal, A., Satpathy, S., Krishnamurthy, R.K.: 2.4 Gbps, 7 mW all-digital PVT-variation tolerant true random number generator for 45 nm CMOS high-performance microprocessors. IEEE J. Solid State Circuits. 47(11), 2807–2821 (2012)

    Article  ADS  Google Scholar 

  29. Bucci, M., Luzzi, R.: Fully digital random bit generators for cryptographic applications. IEEE Transactions on Circ. Syst. I Reg. Papers. 55(3), 861–875 (2008)

    Article  MathSciNet  Google Scholar 

  30. Amaki, T., Hashimoto, M., Onoye, T.: A process and temperature tolerant oscillator-based true random number generator. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 97(12), 2393–2399 (2014)

    Article  ADS  Google Scholar 

  31. Gaviria Rojas, W.A., McMorrow, J.J., Geier, M.L., Tang, Q., Kim, C.H., Marks, T.J., Hersam, M.C.: Solution-processed carbon nanotube true random number generator. Nano Lett. 17(8), 4976–4981 (2017)

    Article  ADS  Google Scholar 

  32. Rührmair, U., Jaeger, C., Bator, M., Stutzmann, M., Lugli, P., Csaba, G.: Applications of high-capacity crossbar memories in cryptography. IEEE Trans. Nanotechnol. 10(3), 489–498 (2011)

    Article  ADS  Google Scholar 

  33. Chiu, Y.T.: A memristor true random-number generator. IEEE Spectr. (2012)

  34. Zhang, T., Yin, M., Xu, C., Lu, X., Sun, X., Yang, Y., Huang, R.: High-speed true random number generation based on paired memristors for security electronics. Nanotechnology. 28(45), 455202 (2017)

    Article  ADS  Google Scholar 

  35. Gupta, M.: Security challenges and cryptography in embedded systems. Int. J. Comput. Sci. Technol. 4(1), 656–662 (2015)

    Google Scholar 

  36. Security Challenges in Embedded Designs by Eran Rippel Discretix Technologies, Ltd. https://www.design-reuse.com/articles/20671/security-embedded-design.html. Accessed 09 Mar 2019

  37. Mavrogiannopoulos, N.: Secure Communications Protocols and the Protection of Cryptographic Keys. ISBN 978-94-6018-683-7 (2013)

  38. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards, vol. 31. Springer Science & Business Media (2008)

  39. The Biggest Security Threats Facing Embedded Designers Engineering Essentials Richard Newell, Architect SoC Group, Microsemi Corp (2016). https://www.microsemi.com. Accessed 09 Mar 2019

  40. Application Note 5421: http://www.maximintegrated.com/an5421 TUTORIAL 5421, AN5421, AN 5421, APP5421, Appnote5421, Appnote 5421© 2013 Maxim Integrated Products, Inc. Accessed 09 Mar 2019

  41. Proceedings of the IEEE, VOL. 94, NO. 2, FEBRUARY (2006), 0018–9219/$20.0 IEEE, Digital Object Identifier. https://doi.org/10.1109/JPROC.2005.862304

  42. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro-an error power estimation tool for QCA circuit design, IEEE International symposium of circuits and systems (ISCAS). 2377–2380 (2011)

  43. Debnath, B., Das, J.C., De, D.: Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circuits Devices Syst.. 11(1), 58–67 (2017)

    Article  Google Scholar 

  44. Pain, P., Das, K., Sadhu, A., Kanjilal, M.R., De, D.: Power analysis attack resistable hardware Cryptographical circuit design using reversible logic gate in quantum cellular automata. Revision submitted to Springer Microsystems Technologies, Circuits and Systems-Vol. 5, (2018)

Download references

Acknowledgments

The authors are grateful to The SCIENCE AND ENGINEERING RESEARCH BOARD (DST-SERB), Govt. of India, for providing with the grant for accomplishment of the project under the Project FILE NO.ECR/2016/000613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Das.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pain, P., Das, K., Sadhu, A. et al. Novel True Random Number Generator Based Hardware Cryptographic Architecture Using Quantum-Dot Cellular Automata. Int J Theor Phys 58, 3118–3137 (2019). https://doi.org/10.1007/s10773-019-04189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04189-2

Keywords

Navigation