Skip to main content

Fast Quantum-Dot Cellular Automata Adder/Subtractor Using Novel Fault Tolerant Exclusive-or Gate and Full Adder


Quantum-dot Cellular automata is a promising area to implement digital systems at nano scale level. Adders and subtractors are widely used in almost every digital information processing system. This work targets to design an efficient 8-bit adder/subtractor that can perform addition as well as subtraction by using a novel control signal distribution scheme. To perform controlled inversion of inputs a novel exclusive-or gate with fewer cells is proposed. During Quantum-dot Cellular automata circuit fabrication, missing cell defects have the potential to affect the performance of a circuit. The proposed designs have higher fault resistance to missing cell defects compared to the existing state-of-the-art designs. Results demonstrate that the proposed design has (N-2) less clock phases compared to the existing state-of-the-art designs. The proposed design can be extended to implement any N-bit adder/subtractor. All the designs are designed and verified using coherence vector simulation engine in QCADesigner.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Bernstein, K., Cavin, R.K., Porod, W., Seabaugh, A., Welser, J.: Device and architecture outlook for beyond CMOS switches. IEEE Proceedings. 98(12), 2169–2184 (2010)

    Article  Google Scholar 

  2. 2.

    Cavin, R.K., Lugli, P., Zhirnov, V.V.: Science and engineering beyond Moore’s law. IEEE Proceedings. 100(5), 1720–1749 (2012)

    Article  Google Scholar 

  3. 3.

    Perri, S., Corsonello, P., Cocorullo, G.: Design of efficient binary comparators in quantum-dot cellular automata. IEEE Trans. Nanotechnol. 13(2), 192–202 (2014a)

    ADS  Article  Google Scholar 

  4. 4.

    Kong, I., Kim, S.W., Swartzlander, E.E.: Design of Goldschmidt dividers with quantum-dot cellular automata. IEEE Trans. Comput. 63(10), 2620–2625 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Awais, M., Vacca, M., Graziano, M., Roch, M.R., Masera, G.: Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12(3), 368–377 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    Zhang, M., Cai, L., Yang, X., Cui, H., Feng, C.: Design and simulation of Turbo encoder in quantum-dot cellular automata. IEEE Trans. Nanotechnol. 14(5), 820–828 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    Sheikhfaal, S., Navi, K., Angizi, S., Navin, A.H.: Designing high speed sequential circuits by quantum-dot cellular automata: memory cell and counter study. Quantum Matter. 4(2), 190–197 (2015)

    Article  Google Scholar 

  8. 8.

    Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)

    Article  Google Scholar 

  9. 9.

    Perri, S., Corsonello, P., Cocorullo, G.: Area-delay efficient binary adders in QCA. IEEE Transactions on very large scale Integration systems. 22(5), 1174–1179 (2014b)

    Article  Google Scholar 

  10. 10.

    Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)

    ADS  Article  Google Scholar 

  11. 11.

    Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–465 (2016)

    Article  Google Scholar 

  12. 12.

    Gladshtein, M.: Design and simulation of novel adder/subtractors on quantum-dot cellular automata: radical departure from Boolean logic circuits. Microelectron. J. 44(6), 545–552 (2013)

    Article  Google Scholar 

  13. 13.

    Hayati, M., Rezaei, A.: Design of novel efficient adder and subtractor for quantum-dot cellular automata. J. Circuit Theory Applications. 43(10), 1446–1454 (2015)

    Article  Google Scholar 

  14. 14.

    Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bitadder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)

    Article  MATH  Google Scholar 

  15. 15.

    Sangsefidi, M., Karimpour, M., Sarayloo, M.: Efficient Design of a Coplanar Adder/subtractor in quantum-dot cellular automata. IEEE European Modelling Symposium. 456–461 (2015)

  16. 16.

    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    ADS  Article  Google Scholar 

  17. 17.

    SangSefidi, M., Abedi, D., Moradian, M.: Design a collector with more reliability against defects during manufacturing in nanometer technology QCA. J. Softw. Eng. Appl. 6(6), 304–312 (2013)

    Article  Google Scholar 

  18. 18.

    Gin, A., Tougaw, P.D., Williams, S.: An alternative geometry for quantum-dot cellular automata. J. Appl. Phys. 85(12), 8281–8286 (1999)

    ADS  Article  Google Scholar 

  19. 19.

    Devadoss, R., Paul, K., Balakrishnan, M.: Coplanar qca crossovers. Electron. Lett. 45(24), 1234–1235 (2009)

    Article  Google Scholar 

  20. 20.

    Arjmand, M.M., Soryani, M., Navi, K.: Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circuits Devices Systems. 7(5), 263–272 (2013)

    Article  Google Scholar 

  21. 21.

    Dysart, T.J., Kogge, P.M.: Probabilistic analysis of a molecular quantum-dot cellular automata adder. IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems. 478–486 (2007)

  22. 22.

    Shin, S.H., Jeon, J.C., Yoo, K.Y.: Wire-crossing technique on quantum-dot cellular automata, NGCIT, pp. 52–57 (2013)

    Google Scholar 

  23. 23.

    Janez, M., Pecar, P., Mraz, M.: Layout design of manufacturable quantum-dot cellular automata. Microelectron. J. 43(7), 501–513 (2012)

    Article  Google Scholar 

  24. 24.

    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. IEEE Proceedings. 85(4), 541–557 (1997)

    Article  Google Scholar 

  25. 25.

    Pudi, V.K., Sridharan, K.: Efficient QCA design of single-bit and multi-bit subtractors. IEEE-NANO. 1155–1158 (2013)

  26. 26.

    Tahoori, M.B., Huang, J., Momenzadeh, M., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Transactions on Computer Aided Design. 24(12), 1881–1893 (2005)

    Article  Google Scholar 

  27. 27.

    Chabi, A.M., Sayedsalehi, S., Angizi, S., Navi, K.: Efficient QCA exclusive-or and multiplexer circuits based on a Nanoelectronic-compatible designing approach. International Scholarly Research Notices. 2014, 1–9 (2014).

    Article  Google Scholar 

  28. 28.

    Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Mohammadi, H., Navi, K.: Energy-efficient single-layer QCA logical circuits based on a novel XOR gate. J. Circuits, Systems and Computers. 27(14), 1850216 (2018).

    Article  Google Scholar 

  30. 30.

    Poorhosseini, M., Hejazi, A.R.: A fault-tolerant and efficient XOR structure for modular Design of Complex QCA circuits, Journal of Circuits. Systems and Computers. 27(7), 1850115 (2018).

    Article  Google Scholar 

  31. 31.

    Sayedsalehi, S., Azghadi, M.R., Angizi, S., Navi, K.: Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf. Sci. 311, 86–101 (2015)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Balali, M., Rezai, A.: Design of low-Complexity and High-Speed Coplanar Four-bit Ripple Carry Adder in QCA technology. Int. J. Theor. Phys. 57, 1948–1960 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Sasamal, T.N., Singh, A.K., Mohan, A.: An efficient design of quantum-dot cellular automata based 5-input majority gate with power analysis. Microprocess. Microsyst. 59, 103–117 (2018).

    Article  Google Scholar 

  34. 34.

    Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik. 127(20), 8576–8591 (2016a)

    ADS  Article  Google Scholar 

  35. 35.

    De, D., Das, J.C.: Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017)

    Article  Google Scholar 

  36. 36.

    Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 74, 1994–2005 (2018)

    Article  Google Scholar 

  37. 37.

    Rashidi, H., Rezai, A.: High-performance full adder architecture in quantum-dot cellular automata. IET J. Engineering. 2017(7), 394–402 (2017)

    Google Scholar 

  38. 38.

    Kassa, S.R., Nagaria, R.K., Karthik, R.: Energy efficient neoteric design of a 3-input majority gate with its implementation and physical proof in quantum dot cellular automata. Nano Communication Networks. 15, 28–40 (2018)

    Article  Google Scholar 

  39. 39.

    Kumar, D., Mitra, D.: Design of a practical fault-tolerant adder in QCA. Microelectron. J. 53, 90–104 (2016)

    Article  Google Scholar 

  40. 40.

    Sasamal, T.N., Singh, A.K., Ghanekar, U.: Design of non-restoring binary array divider in majority logic-based QCA. Electron. Lett. 52(24), 2001–2003 (2016b)

    Article  Google Scholar 

  41. 41.

    Zhang, Y., Xie, G., Sun, M., Lv, H.: Design of normalised and simplified FAs in quantum-dot cellular automata. IET J. Engineering. 2017(10), 557–565 (2017)

    Google Scholar 

  42. 42.

    Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results in Physics. 7, 1389–1395 (2017)

    ADS  Article  Google Scholar 

  43. 43.

    Adelnia, Y., Rezai, A.: A novel adder circuit design in quantum-dot cellular automata technology. Int. J. Theor. Phys. 58(1), 184–200 (2019)

    Article  MATH  Google Scholar 

  44. 44.

    Momenzadeh, M., Huang, J., Tahoori, M., Lombardi, F.: On the evaluation of scaling of QCA devices in the presence of defects at manufacturing. IEEE Trans. Nanotechnol. 4(6), 740–743 (2005)

    ADS  Article  Google Scholar 

  45. 45.

    Walus, K., Jullien, G.A., Dimitrov, V.S.: Computer arithmetic structures for quantum cellular automata. Asilomar Conference on Signals, Systems & Computers. 1435–1439 (2003)

Download references

Author information



Corresponding author

Correspondence to Marshal Raj.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raj, M., Gopalakrishnan, L. & Ko, SB. Fast Quantum-Dot Cellular Automata Adder/Subtractor Using Novel Fault Tolerant Exclusive-or Gate and Full Adder. Int J Theor Phys 58, 3049–3064 (2019).

Download citation


  • Adder
  • Controllable inverter
  • Exclusive-or (exor)
  • Quantum-dot cellular automata (QCA)
  • Subtractor