Skip to main content
Log in

Search for Lepton Flavor Non-universality with B→ (K, K*) τ+τ- Decays

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The decay modes of B meson consisting tau leptons as final state particle are seemed to be the key feature for searching new physics. As the experimental measurements for b → +τ processes are still not confirmed, the theoretical study of these decays is playing vital role in recent times. The lepton flavor universality violation gains much curiosity after the observation of RK and \( {R}_{K^{\ast }} \) anomalies in semileptonic \( B\to \left(K,{K}^{\ast}\right)\mu \overline{\mu} \) channel which provides a hint towards μ − e non-universality in flavor sector. In this paper, we have devoted our concern to the decay mode B → (K, K)τ+τ to predict the branching ratio. We have also searched for the τ − l (where l = e, μ) lepton flavor non-universality for neutral current transitions. We have estimated our results in the standard model as well as in Z′ model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Melikhov, D., Nikitin, N., Simula, S.: Lepton asymmetries in exclusive b → sl+l decays as a test of the standard model. Phys. Lett. B. 430, 332 (1998) arXiv: hep-ph/9803343

    Article  ADS  Google Scholar 

  2. Aaij, R., (LHCb Collaboration), et al.: Measurement of form-factor-independent observables in the B0→K*0 μ+μ- decay. Phys. Rev. Lett. 111, 191801 (2013) arXiv: 1308.1707

    Article  ADS  Google Scholar 

  3. Aaij, R., (LHCb Collaboration), et al.: Test of Lepton Universality using B+ → K+l+ldecays. Phys. Rev. Lett. 113, 151601 (2014) arXiv: 1406.6482

    Article  ADS  Google Scholar 

  4. Aaij, R., (LHCb Collaboration), et al.: Test of lepton universality with B0 → K∗0l+ldecays. J. High Energ. Phys. 08, 055, (2017) arXiv: 1705.05802

    Article  ADS  Google Scholar 

  5. Alok, A.K., et al.: New physics solutions for RD and RD. J. High Energy Phys. 09, 152 (2018) arXiv: 1710.04127

    Article  ADS  Google Scholar 

  6. Bobeth, C., Haisch, U.: New physics in \( {\Gamma}_{12}^{\mathrm{s}}:\left(\overline{\mathrm{s}}\mathrm{b}\right)\left(\overline{\uptau}\uptau \right) \) operators. Acta Phys. Polon. B. 44, 127 (2013) arXiv: 1109.1826

    Article  ADS  Google Scholar 

  7. Capdevila, B., et al.: Searching for new physics with b → sτ+τ processes. Phys. Rev. Lett. 120, 181802 (2018)

    Article  ADS  Google Scholar 

  8. Bobeth, C., Haisch, U., Lenz, A., Pecjak, B., Tetlalmatzi-Xolocotzi, G.: On new physics in ΔΓd. J. High Energy Phys. 06, 040 (2014) arXiv: 1404.2531

  9. Alonso, R., Grinstein, B., Camalich, J.M.: Lepton universality violation and lepton flavor conservation in B-meson decays. J. High Energ. Phys. 10, 184 (2015) arXiv: 1505.05164

    Article  ADS  Google Scholar 

  10. Crivellin, A., Mueller, D., Ota, T.: Simultaneous explanation of R(D(∗)) and b → sμ+μ: the last scalar leptoquarks standing. J. High Energy Phys. 09, 040 (2017) arXiv: 1703.09226

    Article  ADS  Google Scholar 

  11. Calibbi, L., Crivellin, A., Li, T.: A model of vector leptoquarks in view of the B-physics anomalies. Phys. Rev. D. 98(115), 002 (2018) arXiv: 1709.00692

    Google Scholar 

  12. Aaij, R., (LHCb Collaboration), et al.: Search for the decays \( {B}_s^o\to {\tau}^{+}{\tau}^{-} \) and B 0 → τ + τ . Phys. Rev. Lett. 118, 251802 (2017) arXiv: 1703.02508

    Article  ADS  Google Scholar 

  13. Lees, J.P., (BaBar collaboration), et al.: Search for B+ → K+τ+τ at the BaBar experiment. Phys. Rev. Lett. 118, 031802 (2017) arXiv: 1605.09637

    Article  ADS  Google Scholar 

  14. Bobeth, C., et al.: Bs,d→1+1- in the standard model with reduced theoretical uncertainty. Phys. Rev. Lett. 112, 101801 (2014) arXiv: 1311.0903

    Article  ADS  Google Scholar 

  15. Bobeth, C.: Updated \( {\mathrm{B}}_{\mathrm{q}}\to \overline{\ell}\ell \) in the standard model at higher orders. arXiv: 1405.4907, 2014

  16. Kamenik, J.F., Monteil, S., Semkiv, A., Silva, L.V.: Lepton polarization asymmetries in rare semi-tauonic b→s exclusive decays at FCC-ee. Eur. Phys. J. C. 77, 701 (2017) arXiv: 1705.11106

    Article  ADS  Google Scholar 

  17. Hewett, J.L.: Tau polarization asymmetry in B → X s τ + τ . Phys. Rev. D. 53, 4964 (1996) arXiv: hep-ph/9506289

    Article  ADS  Google Scholar 

  18. Bouchard, C., et al.: Standard Model predictions for B → Kll with form factors from lattice QCD. Phys. Rev. Lett. 111, 162002 (2013) Erratum: Phys. Rev. Lett. 112, 149902 (2014)], arXiv: 1306.0434

    Article  ADS  Google Scholar 

  19. Guetta, D., Nardi, E.: Searching for new physics in rare B → τ decays. Phys. Rev. D. 58, 012001 (1998) arXiv: hep-ph/9707371

    Article  ADS  Google Scholar 

  20. Grinstein, B., Savage, M.J., Wise, M.B.: B → Xse+e in the six-quark model. Nucl. Phys. B. 319, 271 (1989)

    Article  ADS  Google Scholar 

  21. Buchalla, G., Buras, A.J., Lautenbacher, M.E.: Weak decays beyond leading logarithms. Rev. Mod. Phys. 68, 1125 (1996) arXiv: hep-ph/9512380

    Article  ADS  Google Scholar 

  22. Buras, A.J., Munz, M.: Effective Hamiltonian for B → Xse+e beyond leading logarithms in the naïve dimensional regularization and ’t Hooft-Veltman schemes. Phys. Rev. D. 52, 186 (1995)

    Article  ADS  Google Scholar 

  23. Alok, A.K., et al.: New-physics contributions to the forward-backward asymmetry in B → K μ + μ . J. High Energy Phys. 02, 053 (2010) arXiv: 0912.1382

    Article  ADS  Google Scholar 

  24. Ali, A., Ball, P., Handoko, L.T., Hiller, G.: Comparative study of the decays B → (K, K)l+lin the standard model and supersymmetric theories. Phys. Rev. D. 61, 074024 (2000)

    Article  ADS  Google Scholar 

  25. Shirkhanghah, N.: Exclusive B → Kl+l decay with polarized K and fourth generation effect. Act. Phys. Pol. B. 42, 1219 (2011)

    Article  Google Scholar 

  26. Buchalla, G., Buras, A.J.: QCD corrections to rare K- and B- decays for arbitrary top quark mass. Nucl. Phys. B. 400, 225 (1993)

    Article  ADS  Google Scholar 

  27. Godfrey, S., Isgur, N.: Mesons in a relativized quark model with chromodynamics. Phys. Rev. D. 32, 189 (1985)

    Article  ADS  Google Scholar 

  28. Melikhov, D., Nikitin, N., Simula, S.: Rare exclusive semileptonic b → s transitions in the standard model. Phys. Rev. D. 57, 6814 (1998)

    Article  ADS  Google Scholar 

  29. Leike, A.: The phenomenology of extra neutral gauge bosons. Phys. Rep. 317, 143 (1999)

    Article  ADS  Google Scholar 

  30. Langacker, P., Plumacher, M.: Flavor changing effects in theories with a heavy Z′ boson with family nonuniversal couplings. Phys. Rev. D. 62, 013006 (2000)

    Article  ADS  Google Scholar 

  31. Sahoo, S., Maharana, L.: Z -mediated flavour – changing neutral currents and their contributions to \( {B}_q^o-\overline{B_q^o} \) mixing. Phys. Rev. D. 69, 115012 (2004)

    Article  ADS  Google Scholar 

  32. Langacker, P.: The physics of heavy Z gauge bosons. Rev. Mod. Phys. 81, 1199 (2009)

    Article  ADS  Google Scholar 

  33. Chang, Q., Lic, X.Q., Yang, Y.D.: Family non-universal Z′ effects on \( {\overline{\mathrm{B}}}_{\mathrm{q}}-{\mathrm{B}}_{\mathrm{q}} \) mixing, B → Xsμ+μand Bs → μ+μdecays. J. High Energy Phys. 02, 082 (2010)

    Article  ADS  Google Scholar 

  34. Barger, V., Chiang, C.W., Langacker, P., Lee, H.S.: Solution to the B → πK puzzle in a flavor-changing Z′ model. Phys. Lett. B. 598, 218 (2004)

    Article  ADS  Google Scholar 

  35. Beaudry, N., et al.: The B → πK puzzle revisited. J. High Energy Phys. 074(2018), (1801) arXiv: 1709.07142

  36. Sahoo, S., Das, C., Maharana, L.: Effect of Z′-mediated flavor-changing neutral current on Bππ decays. Phys. Atom. Nucl. 74, 1032 (2011)

    Article  ADS  Google Scholar 

  37. Li, Y., Wang, W., Du, D., Li, Z., Xu, H.: Impact of Family non-universal Z′ boson on pure annihilation Bs → π+π and Bd → K+K decays. Eur. Phys. J. C. 75, 328 (2015) arXiv: 1503.00114

    Article  ADS  Google Scholar 

  38. Barger, V., et al.: Family nonuniversal U(1)′ gauge symmetries and b → s transitions. Phys. Rev. D. 80, 055008 (2009)

    Article  ADS  Google Scholar 

  39. Chang, Q., Li, X.-Q., Yang, Y.-D.: Constraints on the non-universal Z′ couplings from B → πK, πK and ρK decays. J. High Energy Phys. 05, 056 (2009)

    Article  ADS  Google Scholar 

  40. Bona, M.: (UTfit collaborations), et al.: First evidence of new physics in b ↔ s transitions. PMC Phys. A. 3, 6 (2009)

    Article  ADS  Google Scholar 

  41. Ahmed, I., Rehman, A.: LHCb anomaly in B → Kμ+μ optimised observables and potential of Z′ model. Chin. Phys. C. 42, 063103 (2018) arXiv: 1703.09627

    Article  ADS  Google Scholar 

  42. Altmannshofer, W., Straub, D.M.: New physics in B → Kμμ? Eur. Phys. J. C. 73, 2646 (2013) arXiv: 1308.1501

    Article  ADS  Google Scholar 

  43. Cornell, A.S., Gaur, N.: Lepton polarization asymmetries for B → Kl+l: a model independent approach. J. High Energ. Phys. 02, 005 (2005) arXiv: hep-ph/0408164

    Article  ADS  Google Scholar 

  44. Gaur, N.: Lepton polarization asymmetries in B → Xsτ+τ in MSSM. arXiv: hep-ph/0305242, 2003

  45. Bečirević, D., Fajfer, S., Košnik, N.: Lepton flavor non-universality in b → s + processes. Phys. Rev. D. 92, 014016 (2015) arXiv: 1503.09024

    Article  ADS  Google Scholar 

  46. Rai Choudhury, S., Gaur, N., Cornell, A.S., Joshi, G.C.: Lepton polarization correlations in B→K*τ-τ+. Phys. Rev. D. 68, 054016 (2003) arXiv: hep-ph/0304084

    Article  ADS  Google Scholar 

Download references

Acknowledgments

P. Maji acknowledges the DST, Govt. of India for providing INSPIRE Fellowship through IF160115 for her research work. P. Nayek and S. Sahoo would like to thank SERB, DST, Govt. of India for financial support through grant no. EMR/2015/000817. S. Sahoo also acknowledges the financial support of NIT Durgapur through “Research Initiation Grant” office order No. NITD/Regis/OR/25 dated 31st March, 2014 and NITD/Regis/OR/2014 dated 12th August, 2014. S. Biswas also acknowledges NIT Durgapur for providing fellowship for her research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Maji or S. Sahoo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The basis operators for the semileptonic decays B → (K, K)τ+τ are given as

$$ {\displaystyle \begin{array}{l}{O}_1=\left({\overline{s}}_{\alpha }{\gamma}^{\mu}\left(1-{\gamma}_5\right){b}_{\alpha}\right)\left({\overline{c}}_{\beta }{\gamma}_{\mu}\left(1-{\gamma}_5\right){c}_{\beta}\right),\\ {}{O}_2=\left({\overline{s}}_{\alpha }{\gamma}^{\mu}\left(1-{\gamma}_5\right){b}_{\beta}\right)\left({\overline{c}}_{\beta }{\gamma}_{\mu}\left(1-{\gamma}_5\right){c}_{\alpha}\right),\\ {}{O}_{7\gamma }=\frac{e}{8{\pi}^2}{\overline{s}}_{\alpha }{\sigma}_{\mu \nu}\left[{m}_b\left(\mu \right)\left(1+{\gamma}_5\right)+{m}_s\left(\mu \right)\left(1-{\gamma}_5\right)\right]{b}_{\alpha }{F}^{\mu \nu},\\ {}{O}_{9V}=\frac{e}{8{\pi}^2}\left({\overline{s}}_{\alpha }{\gamma}^{\mu}\left(1-{\gamma}_5\right){b}_{\alpha}\right)\overline{\tau}{\gamma}_{\mu}\tau, \\ {}{O}_{10A}=\frac{e}{8{\pi}^2}\left({\overline{s}}_{\alpha }{\gamma}^{\mu}\left(1-{\gamma}_5\right){b}_{\alpha}\right)\overline{\tau}{\gamma}_{\mu }{\gamma}_5\tau .\end{array}} $$

The amplitudes for meson decays could be written as

$$ {\displaystyle \begin{array}{l}P\left({M}_2,{p}_2\right)\mid {V}_{\mu }(0)\mid P\left({M}_1,{p}_1\right)={f}_{+}\left({q}^2\right){P}_{\mu }+{f}_{-}\left({q}^2\right){q}_{\mu },\\ {}V\left({M}_2,{p}_2,\epsilon \right)\mid {V}_{\mu }(0)\mid P\left({M}_1,{p}_1\right)=2g\left({q}^2\right){\epsilon}_{\mu \nu \alpha \beta}{\epsilon}^{\ast \nu }{p}_1^{\alpha }{p}_2^{\beta },\\ {}V\left({M}_2,{p}_2,\epsilon \right)\mid {A}_{\mu }(0)\mid P\left({M}_1,{p}_1\right)=i{\epsilon}^{\ast \alpha}\left[f\left({q}^2\right){g}_{\mu \alpha}+{a}_{+}\left({q}^2\right){p}_{1\alpha }{P}_{\mu }+{a}_{-}\left({q}^2\right){p}_{1\alpha }{q}_{\mu}\right],\\ {}P\left({M}_2,{p}_2\right)\mid {T}_{\mu \nu}(0)\mid P\left({M}_1,{p}_1\right)=-2 is\left({q}^2\right)\left({p}_{1\mu }{p}_{2\nu }-{p}_{1\nu }{p}_{2\mu}\right),\\ {}V\left({M}_2,{p}_2,\epsilon \right)\mid {T}_{\mu \nu}(0)\mid P\left({M}_1,{p}_1\right)=\\ {}i{\epsilon}^{\ast \alpha}\left[{g}_{+}\left({q}^2\right){\epsilon}_{\mu \nu \alpha \beta}{P}^{\beta }+{g}_{-}\left({q}^2\right){\epsilon}_{\mu \nu \alpha \beta}{q}^{\beta }+{g}_0\left({q}^2\right){p}_{1\alpha }{\epsilon}_{\mu \nu \beta \gamma}{p}_1^{\beta }{p}_2^{\gamma}\right],\\ {}P\left({M}_2,{p}_2\right)\mid {T}_{\mu \nu}^5(0)\mid P\left({M}_1,{p}_1\right)=s\left({q}^2\right){\epsilon}_{\mu \nu \alpha \beta}{P}^{\alpha }{q}^{\beta },\\ {}V\left({M}_2,{p}_2,\epsilon \right)\mid {T}_{\mu \nu}^5(0)\mid P\left({M}_1,{p}_1\right)=\\ {}{g}_{+}\left({q}^2\right)\left({\epsilon}_{\nu}^{\ast }{P}_{\mu }-{\epsilon}_{\mu}^{\ast }{P}_{\nu}\right)+{g}_{-}\left({q}^2\right)\left({\epsilon}_{\nu}^{\ast }{q}_{\mu }-{\epsilon}_{\mu}^{\ast }{q}_{\nu}\right)+{g}_0\left({q}^2\right)\left({p}_1{\epsilon}^{\ast}\right)\left({p}_{1\nu }{p}_{2\mu }-{p}_{1\mu }{p}_{2\nu}\right),\end{array}} $$

where, q = p1 − p2, P = p1 − p2. We have used the following notations: γ5 = 0γ1γ2γ3, \( {\sigma}_{\mu \nu}=\frac{i}{2}\left[{\gamma}_{\mu },{\gamma}_{\nu}\right] \), ϵ0123 =  − 1, \( {\gamma}_5{\sigma}_{\mu \nu}=\frac{i}{2}{\epsilon}_{\mu \nu \alpha \beta}{\sigma}^{\alpha \beta} \) and Sp(γ5γμγνγαγβ) = 4μναβ.

Appendix B

The parameters used for calculating branching ratio and other observables of B → (K, K)τ+τ decay processes

$$ {\displaystyle \begin{array}{l}{\beta}_P={\left|{C}_{9V}^{eff}\left({m}_b,{q}^2\right){f}_{+}\left({q}^2\right)+2\left({m}_b+{m}_s\right){C}_{7\gamma}\left({m}_b\right)s\left({q}^2\right)\right|}^2+{\left|{C}_{10A}\left({m}_b\right){f}_{+}\left({q}^2\right)\right|}^2\\ {}\hat{\varPi}=\left(\hat{t}-1\right)\left(\hat{t}-\hat{r}\right)+\hat{s}\hat{t}+\hat{m}\left(1+\hat{r}+\hat{m}-\hat{s}-2\hat{t}\right)\\ {}{\delta}_P={\left|{C}_{10A}\right|}^2\left\{\left(1+\hat{r}-\frac{\hat{s}}{2}\right){\left|{f}_{+}\left({q}^2\right)\right|}^2+\left(1-\hat{r}\right)\mathit{\operatorname{Re}}\left[{f}_{+}\left({q}^2\right){f}_{-}^{\ast}\left({q}^2\right)\right]+\frac{\hat{s}}{2}{\left|{f}_{-}\left({q}^2\right)\right|}^2\right\}\kern0.50em \ \kern0.50em \ \kern0.50em \ \kern0.50em \ \kern0.50em \end{array}} $$

with, \( \hat{r}\equiv {\left({M}_K/{M}_B\right)}^2 \) and \( \hat{m}\equiv {\left({m}_l/{M}_B\right)}^2 \).

$$ \Big[{\beta}_V^{(1)}=\left[\left(\hat{s}+2\hat{m}\right)\lambda \left(1,\hat{s},\hat{r}\right)+2\hat{s}\hat{\Pi}\right]{\left|G\left({q}^2\right)\right|}^2+\left[\hat{s}+2\hat{m}-\frac{\hat{\Pi}}{2\hat{r}}\right]{\left|F\left({q}^2\right)\right|}^2-\frac{\lambda^2\left(1,\hat{s},\hat{r}\right)}{2\hat{r}}\hat{\Pi}{\left|{H}_{+}\left({q}^2\right)\right|}^2+\frac{\hat{s}-1+\hat{r}}{\hat{r}}\hat{\Pi}R\left({q}^2\right) $$
$$ {\beta}_V^{(2)}=2\hat{s}\left[2\hat{t}+\hat{s}-\hat{r}-1-2\hat{m}\right]{R}_1\left({q}^2\right) $$
$$ {\left|G\left({q}^2\right)\right|}^2={\left|{C}_{9V}^{eff}\left({m}_b,{q}^2\right){M}_Bg\left({q}^2\right)-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b+{m}_s\right)}{M_B}{g}_{+}\left({q}^2\right)\right|}^2+{\left|{C}_{10A}\left({m}_b\right){M}_Bg\left({q}^2\right)\right|}^2 $$
$$ {\left|F\left({q}^2\right)\right|}^2={\left|{C}_{9V}^{eff}\left({m}_b,{q}^2\right)\frac{f\left({q}^2\right)}{M_B}-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b-{m}_s\right)}{M_B}\left(1-\hat{r}\right){B}_0\left({q}^2\right)\right|}^2+{\left|{C}_{10A}\left({m}_b\right)\frac{f\left({q}^2\right)}{M_B}\right|}^2 $$
$$ {\left|{H}_{+}\left({q}^2\right)\right|}^2={\left|{C}_{9V}^{eff}\left({m}_b,{q}^2\right){M}_B{a}_{+}\left({q}^2\right)-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b-{m}_s\right)}{M_B}{B}_{+}\left({q}^2\right)\right|}^2+{\left|{C}_{10A}\left({m}_b\right){M}_B{a}_{+}\left({q}^2\right)\right|}^2 $$
$$ R\left({q}^2\right)=\mathit{\operatorname{Re}}\left\{\left[{C}_{9V}^{eff}\left({m}_b,{q}^2\right)\frac{f\left({q}^2\right)}{M_B}-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b-{m}_s\right)}{M_B}\left(1-\hat{r}\right){B}_0\left({q}^2\right)\right]{\left[{C}_{9V}^{eff}\left({m}_b,{q}^2\right){M}_B{a}_{+}\left({q}^2\right)-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b-{m}_s\right)}{M_B}{B}_{+}\left({q}^2\right)\right]}^{\ast}\right\}+{\left|{C}_{10A}\left({m}_b\right)\right|}^2\mathit{\operatorname{Re}}\left[{a}_{+}\left({q}^2\right){f}^{\ast}\left({q}^2\right)\right] $$
$$ {R}_1\left({q}^2\right)=\mathit{\operatorname{Re}}\left\{\left[{C}_{9V}^{eff}\left({m}_b,{q}^2\right){M}_Bg\left({q}^2\right)-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b+{m}_s\right)}{M_B}{g}_{+}\left({q}^2\right)\right]{\left[{C}_{10A}\left({m}_b\right)\frac{f\left({q}^2\right)}{M_B}\right]}^{\ast}\right\}+\mathit{\operatorname{Re}}\left\{\left[{C}_{9V}^{eff}\left({m}_b,{q}^2\right)\frac{f\left({q}^2\right)}{M_B}-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b-{m}_s\right)}{M_B}\left(1-\hat{r}\right){B}_0\left({q}^2\right)\right]{\left[{C}_{10A}\left({m}_b\right){M}_Bg\left({q}^2\right)\right]}^{\ast}\right\} $$
$$ {B}_0\left({q}^2\right)={g}_{+}\left({q}^2\right)+{g}_{-}\left({q}^2\right)\frac{\hat{s}}{1-\hat{r}};\cdot {B}_{+}\left({q}^2=-\hat{s}{M}_B^2\right)\frac{h\left({q}^2\right)}{2}-{g}_{+}\left({q}^2\right) $$
$$ {\delta}_V=\frac{{\left|{C}_{10A}\right|}^2}{2}\lambda \left(1,\hat{s},\hat{r}\right)\left\{-2{\left|g\left({q}^2\right){M}_B\right|}^2-\frac{3}{\lambda \left(1,\hat{s},\hat{r}\right)}{\left|\frac{f\left({q}^2\right)}{M_B}\right|}^2+\frac{2\left(1+k\right)-\hat{s}}{4\hat{r}}{\left|{a}_{+}\left({q}^2\right){M}_B\right|}^2+\frac{\hat{s}}{4\hat{r}}{\left|{a}_{-}\left({q}^2\right){M}_B\right|}^2+\frac{1}{2\hat{r}}\mathit{\operatorname{Re}}\left[f\left({q}^2\right){a}_{+}^{\ast}\left({q}^2\right)+f\left({q}^2\right){a}_{-}^{\ast}\left({q}^2\right)\right]+\frac{1-\hat{r}}{2\hat{r}}\mathit{\operatorname{Re}}\left[{M}_B{a}_{+}\left({q}^2\right){M}_B{a}_{-}^{\ast}\left({q}^2\right)\right]\right\} $$
$$ {\beta}_V=2\ \lambda \left(1,\hat{s},\hat{r}\right)\hat{s}{\left|G\left({q}^2\right)\right|}^2+\left[2\hat{s}+\frac{{\left(1-\hat{r}-\hat{s}\right)}^2}{4\hat{r}}\right]{\left|F\left({q}^2\right)\right|}^2+ $$
$$ \frac{\lambda^2\left(1,\hat{s},\hat{r}\right)}{4\hat{r}}{\left|H\left({q}^2\right)\right|}^2+\frac{\lambda \left(1,\hat{s},\hat{r}\right)}{2\hat{r}}\left(\hat{s}-1+\hat{r}\right)R\left({q}^2\right)\Big] $$

Here, \( \hat{r}\equiv {\left({M}_{K^{\ast }}/{M}_B\right)}^2 \).

$$ {\displaystyle \begin{array}{l}{R}_G\left({q}^2\right)=\mathit{\operatorname{Re}}\left\{\left[{C}_{9V}^{eff}\left({m}_b,{q}^2\right){M}_Bg\left({q}^2\right)-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b+{m}_s\right)}{M_B}{g}_{+}\left({q}^2\right)\right]{\left[{C}_{10A}\left({m}_b\right){M}_Bg\left({q}^2\right)\right]}^{\ast}\right\}\\ {}{R}_F\left({q}^2\right)=\mathit{\operatorname{Re}}\left\{\left[{C}_{9V}^{eff}\left({m}_b,{q}^2\right)\frac{f\left({q}^2\right)}{M_B}-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b-{m}_s\right)}{M_B}\left(1-\hat{r}\right){B}_0\left({q}^2\right)\right]{\left[{C}_{10A}\left({m}_b\right)\frac{f\left({q}^2\right)}{M_B}\right]}^{\ast}\right\}\\ {}{R}_{H_{+}}\left({q}^2\right)=\mathit{\operatorname{Re}}\left\{\left[{C}_{9V}^{eff}\left({m}_b,{q}^2\right){M}_B{a}_{+}\left({q}^2\right)-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b-{m}_s\right)}{M_B}{B}_{+}\left({q}^2\right)\right]{\left[{C}_{10A}\left({m}_b\right){M}_B{a}_{+}\left({q}^2\right)\right]}^{\ast}\right\}\\ {}{R}_R\left({q}^2\right)=\mathit{\operatorname{Re}}\left\{\left[{C}_{9V}^{eff}\left({m}_b,{q}^2\right)\frac{f\left({q}^2\right)}{M_B}-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b-{m}_s\right)}{M_B}\left(1-\hat{r}\right){B}_0\left({q}^2\right)\right]{\left[{C}_{10A}\left({m}_b\right){M}_B{a}_{+}\left({q}^2\right)\right]}^{\ast}\right\}\\ {}+\mathit{\operatorname{Re}}\left\{\left[{C}_{9V}^{eff}\left({m}_b,{q}^2\right){M}_B{a}_{+}\left({q}^2\right)-\frac{2{C}_{7\gamma}\left({m}_b\right)}{\hat{s}}\frac{\left({m}_b-{m}_s\right)}{M_B}{B}_{+}\left({q}^2\right)\right]{\left[{C}_{10A}\left({m}_b\right)\frac{f\left({q}^2\right)}{M_B}\right]}^{\ast}\right\}\end{array}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, P., Biswas, S., Nayek, P. et al. Search for Lepton Flavor Non-universality with B→ (K, K*) τ+τ- Decays. Int J Theor Phys 58, 2664–2676 (2019). https://doi.org/10.1007/s10773-019-04154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04154-z

Keywords

Navigation