Skip to main content
Log in

A Correction to this article was published on 21 June 2019

This article has been updated

Abstract

In this article, we propose a new kind of quantum states based on acting the number operator M times \( {\hat{n}}^M \) on the coherent state. We term this state the Mth coherent state, based on the value of the power M. We find that it is strongly similar to the coherent state as the analysis of the photonic statistical distributions and the overlap with the coherent state illustrate. Also, we find that it asymptotically reaches the minimum uncertainty and has a localized behavior in the Husimi function. However, in contrast to coherent state, the Mth coherent state has strong nonclassical features such as antibunching and squeezing for a relatively long range. Other parameters and measurements are discussed and studied. Finally, we highlight the similarity between the higher orders of the near coherent states and the Mth coherent states in order to potentially generate our proposed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 21 June 2019

    The original article has been corrected. The left image of Figure 3 was previously not correct.

Notes

  1. If there are more than one coherent state and the confusion is possible, we can just call it the 2nd CS or M = 2 of the Mth CS, so Mth be the name.

References

  1. Glauber, R.J.: Phys. Rev. 131, 2766 (1963)

    ADS  MathSciNet  Google Scholar 

  2. Sudarshan, E.C.G.: Phys. Rev. Lett. 10, 277 (1963)

    ADS  MathSciNet  Google Scholar 

  3. Walls, D.F.: Nature 306, 141 (1983)

    ADS  Google Scholar 

  4. Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  5. Scully, M., Zubairy, M.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  6. Gerry, C.: J. Mod. Opt. 40, 1053 (1993)

    ADS  MathSciNet  Google Scholar 

  7. Schleich, W., Pernigo, M., Kien, F.L.: Phys. Rev. A 44, 2172 (1991)

    ADS  Google Scholar 

  8. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  9. Caves, C.M.: Phys. Rev. D 26, 1817 (1982)

    ADS  Google Scholar 

  10. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    MATH  Google Scholar 

  11. Furasawa, A., Sorensen, J.L., et al.: Science 282, 706 (1998)

    ADS  Google Scholar 

  12. Jeong, H., Kim, M.S.: Quantum Inf. Comput. 2, 208 (2002)

    MathSciNet  Google Scholar 

  13. Richardson, W.H., Shelby, R.M.: Phys. Rev. Lett. 64, 400 (1990)

    ADS  Google Scholar 

  14. Glauber, R.J.: Phys. Rev. 130, 2529 (1963)

    ADS  MathSciNet  Google Scholar 

  15. Klauder, J.R.: Ann. Phys. 11, 123 (1960). J. Math. Phys. 4, 1055 (1963); J. Math. Phys. 4, 1058 (1963)

    ADS  Google Scholar 

  16. Klauder, J.R., Sudarshan, E.C.G.: Fundamentals of quantum optics (benjamin NY (1968)

  17. Klauder, J.R., Skagerstam, B.-S.: Coherent States - Applications in Physics and Mathematical Physics. World Scientific, Singapore (1985)

    MATH  Google Scholar 

  18. Loudon, R., Knight, P.: J. Mod. Opt. 34, 709 (1987)

    ADS  Google Scholar 

  19. Zhang, W., Feng, D.H., Gilmore, R.: Rev. Mod. Phys. 62, 867 (1990)

    ADS  Google Scholar 

  20. Miranowicz, A., Pi?tek, K., Tanas, R.: Phys. Rev. A 50, 3423 (1994)

    ADS  Google Scholar 

  21. Sivakuma, S.: Inter. J. Theor. Phys. 53, 1697 (2014)

    Google Scholar 

  22. Barnett, S.M., Ferenczi, G., Gilson, C.R., Speirits, F.C.: Phys. Rev. A 98, 013809 (2018)

    ADS  Google Scholar 

  23. Sodog, K., Hounkonnou, M.N., Aremua, I.: Eur. Phys. J. D 72, 105 (2018)

    ADS  Google Scholar 

  24. Zavatta, A., Viciani, S., Bellini, M.: Science 306, 660 (2004)

    ADS  Google Scholar 

  25. Nieto, M.M., Simmons, L.M.: Phys. Rev. Lett. 41, 207 (1978)

    ADS  Google Scholar 

  26. Gazeau, J.P., Klauder, J.: J. Phys. A: Math. Gen. 32, 123 (1999)

    ADS  Google Scholar 

  27. de Matos Filho, R.L., Vogel, W.: Phys. Rev. A 54, 4560 (1996)

    ADS  Google Scholar 

  28. Recamier, J., Gorayeb, M., Mochan, W.L., Paz, J.L.: Int. J. Theor. Phys. 47, 673 (2008)

    Google Scholar 

  29. Agarwal, G.S., Tara, K.: Phys. Rev. A 43, 492 (1991)

    ADS  Google Scholar 

  30. Kim, M.S.: J. Phys. B: At. Mol. Opt. Phys. 41, 133001 (2008)

    ADS  Google Scholar 

  31. Kuang, L.M., Wang, F.B., Zhou, Y.G.: J. Mod. Opt. 41, 1307 (1994)

    ADS  Google Scholar 

  32. Leonski, W.: Phys. Rev. A 55, 3874 (1997)

    ADS  Google Scholar 

  33. Baseia, B., Moussa, M., Bagnato, V.: Phys. Lett. A 240, 277 (1998)

    ADS  MathSciNet  Google Scholar 

  34. Miranowicz, A., Leonski, W., Imoto, N.: Adv. Chem. Phys. 119, 155 (2001)

    Google Scholar 

  35. Leonski, W., Miranowicz, A.: Adv. Chem. Phys. 119, 194 (2001)

    Google Scholar 

  36. Othman, A., Yevick, D.: Int. J. Theor. Phys. 57, 2293 (2018)

    Google Scholar 

  37. Othman, A.: Quant. Info. and Comp. 19, 0014 (2019)

    MathSciNet  Google Scholar 

  38. Gerry, C.C.: J. Mod. Opt. 40, 1053 (1993)

    ADS  MathSciNet  Google Scholar 

  39. Bell, E.T.: Ann. Math. 29, 38 (1927)

    MathSciNet  Google Scholar 

  40. Abbas, M., Bouroubi, S.: Discrete Math. 293, 5 (2005)

    MathSciNet  Google Scholar 

  41. Abramowitz, M., Stegun, I.A.: 6.3 psi (Digamma) Function, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn., p. 258. Dover, New York (1972)

    Google Scholar 

  42. Mandel, L.: Opt. Lett. 4, 205 (1979)

    ADS  Google Scholar 

  43. Husimi, K.: Proc. Phys. Math. Soc. Jpn. 22, 264 (1940)

    Google Scholar 

  44. Yuen, H.P.: Phys. Rev. A 13, 2226 (1976)

    ADS  Google Scholar 

  45. Caves, C.M., Schumaker, B.L.: Phys. Rev. A 31, 3093 (1985)

    ADS  MathSciNet  Google Scholar 

  46. Podoshvedov, S.A.: arXiv:1501.05460 (2015)

Download references

Acknowledgements

Taibah University is strongly acknowledged for their financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Othman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The ​original ​version ​of ​this ​article ​was ​revised: The left image of Figure 3 was previously not correct.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A. The Mth Coherent State. Int J Theor Phys 58, 2451–2463 (2019). https://doi.org/10.1007/s10773-019-04136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04136-1

Keywords

Navigation