Skip to main content
Log in

Entanglement Between Two Dipole-Coupled Qubits Interacting with Two Independent Slightly Detuned Cavity Modes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Considering the generalized double Jaynes-Cummings model, we examine the entanglement between two non-identical dipole-dipole coupled qubits interacting with two independent detuned vacuum cavity modes. We calculate the negativity as a measure of qubits entanglement. We find that entanglement parameter evolve periodically with time and the period are affected by the model parameters and initial states of qubits. For unentangled initial states the detuning and dipole-dipole interaction affect only the period of entanglement oscillations, not the maximum value of entanglement. For entangled states the detuning stabilizes the entanglement parameter oscillations. According to choice of initial entangled state the dipole-dipole strength is greatly enhances or weakens the oscillations of the entanglement parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buluta, I., Ashhab, S., Nori, F.: Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  2. Xiang, F.-L., Ashhab, S., You, F.J.Q., Nori, J.Q.: Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  3. Georgescu, I., Ashhab, S., Nori, F.: Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  4. Shore, B.W., Knight, P.L.: J. Mod. Opt. 40, 1195 (1993)

    Article  ADS  Google Scholar 

  5. Yönac, M.Y., Yu, T., Eberly, J.H.: J. Phys. B: At. Mol. Opt. Phys. 39, S621 (2006)

    Article  Google Scholar 

  6. Yönac, M.Y., Yu, T., Eberly, J.H.: J. Phys. B: At. Mol. Opt. Phys. 40, S45 (2007)

    Article  ADS  Google Scholar 

  7. Hu, Y.-H., Fang, M.-F., Cai, J.-W., Zeng, K., Jiang, C.-L.: J. Mod. Opt. 55, 3551 (2008)

    Article  ADS  Google Scholar 

  8. Hu, Y.-H., Fang, M.-F., Cai, J.-W., Jiang, C.-L.: Int. J. Theor. Phys. 47, 2554 (2008)

    Article  Google Scholar 

  9. Du, M., Fang, M.-F., Liu, X.: Chin. Opt. Lett. 7, 443 (2009)

    Article  Google Scholar 

  10. Xie, Q., Fang, M.-F.: Int. J. Theor. Phys. 51, 778 (2012)

    Article  Google Scholar 

  11. Liao, Q., Nie, W., Zhou, N., Liu, Y., Ahmad, M.A.: Chin. J. Phys. 51, 404–411 (2013)

    Google Scholar 

  12. Xie, Q., Fang, M.-F.: Commun. Theor. Phys. 54, 840 (2010)

    Article  ADS  Google Scholar 

  13. Ouyang, X.-C., Fang, M.-F., Kang, G.-D., Deng, X.-J., Huang, L.-Y.: Chin. Phys. B 19, 030309 (2010)

    Article  ADS  Google Scholar 

  14. Vieira, A.R, de Oliveira, J.G.G. Jr., Peixoto de Faria, J.G., Nemes, M.C.: Braz. J. Phys. 44, 19 (2014)

    Article  ADS  Google Scholar 

  15. Baghshahi, H.R., Tavassoly, M.F., Faghihi, M.J.: Int. J. Theor. Phys. 54, 2839 (2015)

    Article  Google Scholar 

  16. Zou, H.-M., Fang, M.-F.: Quan. Inf. Process. 14, 2673 (2015)

    Article  ADS  Google Scholar 

  17. Zhu, W.-T., Ren, Q.-B., Duan, L.-W., Chen, Q.-H.: Chin. Phys. Lett. 33, 050302 (2016)

    Article  Google Scholar 

  18. Chan, S., Reid, M.D., Ficek, F.: J. Phys. B: At. Mol. Opt. Phys. 42, 065507 (2009)

    Article  ADS  Google Scholar 

  19. Aguiar, L.S., Munhoz, P.P., Vidiella-Barranco, A., Roversi, J.A.: J. Opt. B 7, S769 (2005)

    Article  ADS  Google Scholar 

  20. Hu, Y.-H., Fang, M.-F., Jiang, C.-L., Zeng, K.: Chin. Phys. 17, 1784 (2008)

    Article  ADS  Google Scholar 

  21. Liao, X.P., Fang, M.F., Cai, J.W., Zheng, X.J.: Chin. Phys. B 17, 2137 (2008)

    Article  ADS  Google Scholar 

  22. Bashkirov, E.K., Stupatskaya, M.P.: Laser Phys. 19, 525 (2009)

    Article  ADS  Google Scholar 

  23. Bashkirov, E.K., Mastyugin, M.S.: Opt. Spectrosc. 116, 630 (2014)

    Article  ADS  Google Scholar 

  24. Bashkirov, E.K., Mastyugin, M.S.: Opt. Commun. 313, 170 (2014)

    Article  ADS  Google Scholar 

  25. Zhang, B.: Opt. Commun. 283, 4676 (2010)

    Article  ADS  Google Scholar 

  26. Evseev, M.M., Bashkirov, E.K.: Proc. SPIE 10337, 103370D (2017)

    Google Scholar 

  27. Evseev, M.M., Bashkirov, E.K.: J. Phys.: Conf. Ser. 917, 062011 (2017)

    Google Scholar 

  28. Izmalkov, A. et.al.: Phys. Rev. Lett. 93, 037003 (2004)

    Article  ADS  Google Scholar 

  29. Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. Horodecki, R., Horodecki, M., Horodecki, P.: Phys. Lett. A 333, 223 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Bashkirov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashkirov, E.K. Entanglement Between Two Dipole-Coupled Qubits Interacting with Two Independent Slightly Detuned Cavity Modes. Int J Theor Phys 58, 2346–2356 (2019). https://doi.org/10.1007/s10773-019-04126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04126-3

Keywords

Navigation