Skip to main content
Log in

The Effects of Electric Field on the Coherence Time of RbCl Quantum Pseudodot Qubit

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We academically explore the properties of the coherence time (CT) of an electron powerful coupled to the phonons in a RbCl quantum pseudodot (QPD) qubit with an exterior electric field alongside the ρx direction. By employing the Pekar type variational method (PTVM) and the Fermi golden rule, the CT changes with the electric field, the chemical potential of the two-dimensional electron gas (CPTDEG), the zero point of the pseudoharmonic potential (ZPPHP) and the polaron radius is studied. The examined results indicate ① that the CT of RbCl QPD qubit decays with aggrandizing electric field, ② that the CT is a decreasing function of the CPTDEG, the ZPPHP and the polaron radius, ③ that here we can find that we can adjust the CT by changing the external electric field, the CPTDEG, the ZPPHP and the polaron radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reed, A.P., Mayer, K.H., Teufel, J.D., Burkhart, L.D., Pfaff, W., Reagor, M., Sletten, L., Ma, X., Schoelkopf, R.J., Knill, E., Lehnert, K.W.: Faithful conversion of propagating quantum information to mechanical motion. Nat. Phys. 13, 1163–1167 (2017)

    Article  Google Scholar 

  2. Chou, K.S., Blumoff, J.Z., Wang, C.S., Reinhold, P.C., Axline, C.J., Gao, Y.Y., Frunzio, L., Devoret, M.H., Jiang, L., Schoelkopf, R.J.: Deterministic teleportation of a quantum gate between two logical qubits. Nature. 561, 368–373 (2018)

    Article  Google Scholar 

  3. Kalb, N., Reiserer, A.A., Humphreys, P.C., Bakermans, J.J.W., Kamerling, S.J., Nickerson, N.H., Benjamin, S.C., Twitchen, D.J., Markham, M., Hanson, R.: Entanglement distillation between solid-state quantum network nodes. Science. 356, 928–932 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Abadillo-Uriel, J.C., Thorgrimsson, B., Kim, D., Smith, L.W., Simmons, C.B., Ward, D.R., Foote, R.H., Corrigan, J., Savage, D.E., Lagally, M.G., Calderón, M.J., Coppersmith, S.N., Eriksson, M.A., Friesen, M.: Signatures of atomic-scale structure in the energy dispersion and coherence of a Si quantum-dot qubit. Phys. Rev. B. 98, 165438 (2018)

    Article  ADS  Google Scholar 

  5. Delteil, A., Sun, Z., Fält, S., Imamoğlu, A.: Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot. Phys. Rev. Lett. 118, 177401 (2017)

    Article  ADS  Google Scholar 

  6. Koski, J.V., Landig, A.J., Pályi, A., Scarlino, P., Reichl, C., Wegscheider, W., Burkard, G., Wallraff, A., Ensslin, K., Ihn, T.: Floquet Spectroscopy of a Strongly Driven Quantum Dot Charge Qubit with a Microwave Resonator. Phys. Rev. Lett. 121, 043603 (2018)

    Article  ADS  Google Scholar 

  7. Khordad, R., Ghanbari, A.: Effect of phonons on optical properties of RbCl quantum pseudodot qubits. Opt. Quant. Electron. 49, 76 (2017)

    Article  Google Scholar 

  8. Liang, Z.H., Xiao, J.L.: Effect of electric field on RbCl quantum pseudodot qubit. Indian J. Phys. 92, 437–440 (2018)

    Article  ADS  Google Scholar 

  9. Chen, Y.C., Xiao, J.L.: The Effect of Temperature and Electric Field on a Quantum Pseudodot Qubit. Int. J. Theor. Phys. 57, 533–538 (2018)

    Article  MATH  Google Scholar 

  10. Landau, L.D., Lifshitz, E.M.: Quantum mechanics (nonrelativistic theory). London. (1987)

  11. Feng, L.Q., Xiao, J.L.: The effects of temperature and electric field on the properties of the polaron in a RbCl quantum pseudodot. Opt. Quant. Electron. 48, 459 (2016)

    Article  Google Scholar 

  12. Lee, T.D., Low, F.E., Pines, D.: The Motion of Slow Electrons in a Polar Crystal. Phys. Rev. 90, 297–302 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Pekar, S.I., Deigen, M.F.: Zh. Eksp. Teor. Fiz. 18, 481 (1948)

    Google Scholar 

  14. Pekar, S.I.: Untersuchungen über die Elektronen-theorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  15. Ding, Z.H., Sun, Y., Xiao, J.L.: Optical phonon effect in an asymmetric quantum dot qubit. Int. J. Quantum. Inf. 10, 1250077 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xiao, W., Xiao, J.L.: Coulomb bound potential quantum rod qubit. Superlattice. Microst. 52, 851–860 (2012)

    Article  ADS  Google Scholar 

  17. Xiao, J.L.: Effects of temperature and hydrogen-like impurity on the coherence time of RbCl parabolic quantum dot qubit. Superlattice. Microstruct. 90, 308–312 (2016)

    Article  ADS  Google Scholar 

  18. Devreese, J.T.: Polarons in ionic crystals and polar semiconductors. North-Holland, Amsterdam (1972)

    Google Scholar 

  19. Hackens, B., Faniel, S., Gustin, C., Wallart, X., Bollaert, S., Cappy, A., Bayot, V.: Phys. Rev. Lett. 94, 146802 (2005)

    Article  ADS  Google Scholar 

  20. Hackmann, J., Glasenapp, P., Greilich, A., Bayer, M., Anders, F.B.: Influence of the Nuclear Electric Quadrupolar Interaction on the Coherence Time of Hole and Electron Spins Confined in Semiconductor Quantum Dots. Phys. Rev. Lett. 115, 207401 (2015)

    Article  ADS  Google Scholar 

  21. Yuan, X.Z., Zhu, K.D., Li, W.S.: The coherent time evolution of two coupled quantum dots in a two-mode cavity. Eur. Phys. J. D. 31, 499–506 (2004)

    Article  ADS  Google Scholar 

  22. Wiersig, J.: Computation of the coherence time of quantum-dot microcavity lasers including photon-carrier and photon-photon correlations. Phys. Status Solidi B. 248, 883–886 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation of China under Grant No.11464033 & 11464034 and the Inner Mongolia University for Nationalities Research Funded Project (Project No.: NMDYB1756).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, ZH., Cai, CY. & Xiao, JL. The Effects of Electric Field on the Coherence Time of RbCl Quantum Pseudodot Qubit. Int J Theor Phys 58, 2320–2326 (2019). https://doi.org/10.1007/s10773-019-04122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04122-7

Keywords

PACS Numbers

Navigation