Skip to main content
Log in

Solving the Fourier Transform Issue Using Quantum Coherent States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Data on frequency and time is not simultaneously available in a Fourier transform. Problems with the Fourier transform have led to the emergence of short-window Fourier analysis which itself has several limitations. The main problem with short-time Fourier transform is related to Heisenberg’s uncertainty principle. In the wavelet transform, the signal is analyzed on a set of wavelet functions (coherent states). In quantum mechanics, the coherent state is a type of quantum state which has the minimum value of uncertainty. In the present study, the concepts of quantum mechanics such as the uncertainty principle, Dirac’s notation and quantum coherent states are used to present a method for obtaining wavelet functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heisenberg, W.: ber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43(3–4), 172–198 (1927)

    Article  ADS  MATH  Google Scholar 

  2. Gabrielse, G., Dehmelt, H.: Observation of inhibited spontaneous emission. Phys. Rev. Lett. 55(1), 67–70 (1985)

    Article  ADS  Google Scholar 

  3. Klauder, J.: Coherent state (Quantum mechanics). Scholarpedia 4(9), 8686 (2009)

    Article  ADS  Google Scholar 

  4. Schrodinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049–1070 (1926)

    Article  ADS  Google Scholar 

  5. Glauber, R.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766–2788 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Morlet, J., Arens, G., Fourgeau, E., Glard, D.: Wave propagation and sampling theory-Part I: complex signal and scattering in multilayered media. Geophysics 47(2), 203–221 (1982)

    Article  ADS  Google Scholar 

  7. Grossmann, A., Morlet, J.: Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rioul, O., Vetterli, M.: Wavelets and signal processing. IEEE Signal Process. Mag. 8(4), 14–38 (1991)

    Article  ADS  Google Scholar 

  9. Yan, R., Gao, R., Chen, X.: Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96, 1–15 (2014)

    Article  Google Scholar 

  10. Addison, P.: Wavelet transforms and the ECG: a review. Physiol. Meas. 26(5), R155–R199 (2005)

    Article  ADS  Google Scholar 

  11. Chui, C.: An introduction to wavelets. Math. Comput. 60(202), 854 (1993)

    Google Scholar 

  12. Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122(5), 1649–1658 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cartwright, M.: Fourier methods for mathematicians scientists and engineers. Ellis Horwood, New York (1990)

    MATH  Google Scholar 

  14. Addison, P.: The illustrated wavelet transform handbook (n.d.)

  15. Gabor, D.: Theory of communication. Journal of the Institution of Electrical Engineers - Part I: General 94(73), 58–58 (1947)

    Google Scholar 

  16. Mertins, A.: Signal analysis. Wiley, New York (2001)

    MATH  Google Scholar 

  17. Ali, S., Antoine, J., Gazeau, J.P.: Coherent states, wavelets, and their generalizations. [Place of publication not identified]. Springer, New York (2014)

    Book  Google Scholar 

  18. Sakurai, J.: Advanced quantum mechanics. Pearson Education Inc, Delhi (2006)

    Google Scholar 

  19. Arfken, G.B., Weber, H.J., Harris, F.H.: Mathematical methods for physicists, 7th. Academic Press, Cambridge (2015)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor M.V. Takook, R. Rezaee and Z. Athari for her interest in this work. This work has been supported by the Islamic Azad University, Kermanshah Branch, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parsamehr.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Equations

Appendix: Proof of Equations

By using the following identities:

$$ \langle\alpha|(a+a^{\dag})|\alpha\rangle=(\alpha+\bar{\alpha}), $$
(A.1)
$$ \langle\alpha|(a-a^{\dag})|\alpha\rangle=(\alpha-\bar{\alpha}), $$
(A.2)
$$ \langle\alpha|(a+a^{\dag})(a+a^{\dag})|\alpha\rangle=(\alpha+\bar{\alpha})^{2}+ 1, $$
(A.3)
$$ \langle\alpha|(a-a^{\dag})(a-a^{\dag})|\alpha\rangle=(\alpha-\bar{\alpha})^{2}-1, $$
(A.4)

therefore, 〈(Δx)2〉 and 〈(Δp)2〉 are obtained:

$$ \langle({\Delta} x)^{2}\rangle_{\alpha}=\langle x^{2}\rangle_{\alpha}-\langle x\rangle^{2}_{\alpha}=\frac{\hbar}{2m\omega} :x=\sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dag}), $$
(A.5)
$$ \langle({\Delta} p)^{2}\rangle_{\alpha}=\langle p^{2}\rangle_{\alpha}-\langle p\rangle^{2}_{\alpha}=\frac{\hbar m\omega}{2} :p=i\sqrt{\frac{m\hbar\omega}{2}}(-a+a^{\dag}). $$
(A.6)

Now we want to consider completeness:

$$ \int {d^{2}}\alpha|\alpha\rangle\langle\alpha|=\int {d^{2}}\alpha e^{-|\alpha|^{2}}\sum\limits_{mn}\frac{\bar{\alpha}^{n}\alpha^{m}}{\sqrt{n!m!}}|m\rangle\langle n|, $$
(A.7)

{\break}α can be written using polar coordinates:

$$\alpha=re^{i\phi} {d^{2}}\alpha=d\phi dr r,$$
$$ {\int}_{0}^{2\pi} e^{i(n-m)\phi} d\phi= 2\pi\delta_{mn}, $$
(A.8)
$$ {\int}_{0}^{\infty} e^{-r^{2}} r^{2n + 1} dr=\frac{n!}{2}, $$
(A.9)

therefore

$$ \int {d^{2}}\alpha|\alpha\rangle\langle\alpha|=\pi\sum\limits_{n}|n\rangle\langle n|=\pi, $$
(A.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanijafari, S., Parsamehr, S. Solving the Fourier Transform Issue Using Quantum Coherent States. Int J Theor Phys 58, 2407–2413 (2019). https://doi.org/10.1007/s10773-019-04115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04115-6

Keywords

Navigation