Skip to main content
Log in

Practical Security Analysis of Self-Referenced CV-QKD System in the Presence of Polarization Aberration

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

How to remove local oscillator (LO) side channel attacks has been a notoriously hard problem in continuous-variable quantum key distribution (CV-QKD). In the self-referenced CV-QKD schemes, the LO signal is locally generated at the receiver by an independent laser so that it is not co-transmitted with the quantum signal. This simple solution removes all LO side channels. However it also introduces some other practical vulnerabilities. Especially the polarization states of the quantum signal and LO signal may not be identical across the detector because of the presence of the polarization aberrations. Thus, the detection efficiency which is arguably the most critical experiment parameter of the practical implementation will be impaired. In this paper, we analyze the impact of polarization aberrations on the detection efficiency for CV-QKD and propose a self-referenced CV-QKD scheme in the presence of polarization aberrations by using an off-axis optical system. In the proposed scheme, the polarization states of the quantum signal would change with the off-axis optical system, thus impairing the heterodyne efficiency. Our security analysis shows a gap between the theory and practice of CV-QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. of the IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

  2. Yuen, H.P.: Security of quantum key distribution. IEEE Access 4, 724–749 (1998)

    Article  Google Scholar 

  3. Zhou, N.R., Wang, L.J., Ding, J., Gong, L.H., Zuo, X.W.: Novel quantum deterministic key distribution protocols with entangled states. Int. J. Theor. Phys. 49, 2035–2044 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. He, G.Q., Zhu, S.W., Guo, H.B., Zeng, G.H.: Security of quantum key distribution using two-mode squeezed states against optimal beam splitter attack. Chin. Phys. B 17, 1263–1268 (2008)

    Article  Google Scholar 

  5. Gong, L.H., Song, H.C., He, C.S., Liu, Y., Zhou, N.R.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89, 035101 (2014)

    Article  ADS  Google Scholar 

  6. Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15, 105204 (2018)

    Article  ADS  Google Scholar 

  7. Huang, P., He, G.Q., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 530–537 (2013)

    Google Scholar 

  8. Gong, L.H., Tian, C., Li, J.F., Zou, X.F.: Quantum network dialogue protocol based on continuous variable GHZ states. Quantum Inf. Process 17, 331 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Huang, P., Huang, J.Z., Wang, T., Li, H.S., Huang, D., Zeng, G.H.: Robust continuous-variable quantum key distribution against practical attacks. Phys. Rev. A 95, 052302 (2017)

    Article  ADS  Google Scholar 

  10. Guo, Y., Xie, C.L., Liao, Q., Zhao, W., Huang, D.: Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel. Phys. Rev. A 96, 022320 (2017)

    Article  ADS  Google Scholar 

  11. Guo, Y., Liao, Q., Wang, Y.J., Huang, D., Huang, P., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95, 032304 (2017)

    Article  ADS  Google Scholar 

  12. Liao, Q., Wang, Y.J., Huang, D., Guo, Y.: Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution. Opt. Express 26, 19907 (2018)

    Article  ADS  Google Scholar 

  13. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004)

    Article  ADS  Google Scholar 

  14. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Coherent-state quantum key distribution without random basis switching. Phys. Rev. A 73, 022316 (2006)

    Article  ADS  Google Scholar 

  15. Grosshans, F.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020504 (2005)

    Article  ADS  Google Scholar 

  16. Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006)

    Article  ADS  Google Scholar 

  17. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  18. Qin, H., Kumar, R., Alléaume, R.: Quantum hacking: saturation attack on practical continuous-variable quantum key distribution. Phys. Rev. A 94, 012325 (2016)

    Article  ADS  Google Scholar 

  19. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  20. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Gehring, T., Jacobsen, C.S., Andersen, U.L.: Reply to discrete and continuous variables for measurement-device-independent quantum cryptography. Nature Photon. 9, 773–775 (2015)

    Article  ADS  Google Scholar 

  21. Soh, D.B.S., Brif, C., Coles, P.J., Lutkenhaus, N., Camacho, R.M., Urayama, J., Sarovar, M.: Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X 5, 041010 (2015)

    Google Scholar 

  22. Yang, Y., Yan, C.X., Hu, C.H., Wu, C.J.: Modified heterodyne effociency for coherent laser communication in the presence of polarization aberrations. Opt. Express 25, 7567–7591 (2017)

    Article  ADS  Google Scholar 

  23. Yun, G., Crabtree, K., Chipman, R.A.: Skew aberration: a form of polarization aberration. Opt. Lett. 36, 4062–4064 (2011)

    Article  ADS  Google Scholar 

  24. McIntyre, G.R., Kye, J., Levinson, H., Neureuther, A.R.: Polarization aberrations in hyper-numericalaperture projection printing: a comparison of various representations. J. Microlith. Microfab. Microsyst. 5, 033001 (2006)

    Google Scholar 

  25. Fink, D.: Coherent detection signal-to-noise. Appl. Opt. 14, 689–690 (1975)

    Article  ADS  Google Scholar 

  26. Yun, G., Crabtree, K., Chipman, R.A.: Three-dimensional polarization ray-tracing calculus i: definition and diattenuation. Appl. Opt. 50, 2855–2865 (2011)

    Article  ADS  Google Scholar 

  27. Yun, G., McClain, S.C., Chipman, R.A.: Three-dimensional polarization ray-tracing calculus II: retardance. Appl. Opt. 50, 2866–2874 (2011)

    Article  ADS  Google Scholar 

  28. Ruoff, J., Totzeck, M.: Orientation Zernike polynomials: a useful way to describe the polarization effects of optical imaging systems. JM3 8, 031404 (2009)

    Google Scholar 

  29. Yamamoto, N., Kye, J., Levison, H.J.: Polarization aberration analysis using Pauli-Zernike representation. In: Conference on Optical Microlithography XX, p 65200Y. SPIE, California (2007)

  30. Yang, Y., Yan, C.: Polarization property analysis of a periscopic scanner with three-dimensional polarization ray-tracing calculus. Appl. Opt. 55, 1343–1350 (2016)

    Article  ADS  Google Scholar 

  31. Tanaka, K., Ohta, N.: Effects of tilt and offset of signal field on heterodyne efficiency. Appl. Opt. 26, 627–632 (1987)

    Article  ADS  Google Scholar 

  32. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81, 062343 (2010)

    Article  ADS  Google Scholar 

  33. Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete variable protocols with one-way postprocessing. Phys. Rev. Lett. 100, 200501 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2018zzts533), the National Natural Science Foundation of China (Grant Nos. 61871407, 61572529), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB510045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, S., Guo, Y. et al. Practical Security Analysis of Self-Referenced CV-QKD System in the Presence of Polarization Aberration. Int J Theor Phys 58, 2091–2105 (2019). https://doi.org/10.1007/s10773-019-04101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04101-y

Keywords

Navigation