International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 2033–2042 | Cite as

Protecting Qutrit-Qutrit Entanglement Under the Generalized Amplitude Decoherence of the Finite Temperature

  • MeiJiao Wang
  • Yunjie XiaEmail author


We investigate the dynamics and protection of quantum entanglement of a qutrit-qutrit system under local amplitude damping channels with finite temperature. We consider two different initial states. We find that the qutrit-qutrit entanglement decays monotonically as the decoherence strength increases, and may go through entanglement sudden death at higher temperature. Special attention is paid to how to protect the quantum entanglement from decoherence by weak measurement and quantum measurement reversal. Our results show that the entanglement increases with the increase of weak measurement strength when the temperature is lower. However, the protections of entanglement by weak measurement and quantum measurement reversal are almost failed and the decays of entanglement goes up with the increase of weak measurement strength for different decoherence strength when the temperature is higher, even entanglement suffers sudden death.


Quantum entanglement Weak measurement and measurement reversal The generalized amplitude damping Negativity 



This work was supported by the National Natural Science Foundation of China Grant Nos. 61675115, 11704221.


  1. 1.
    Horodedecki, R., Horodedecki, P., Horodedecki, M., Horodedecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Zyczkowski, K., Horodedecki, P., Horodedecki, M., Horodedecki, R.: Dynamics of quantum entanglement. Phys. Rev. A 86, 012101 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zurek, W.H.: Decoherence einselection and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Ribeiro, P.H.S., Davidovich, L.: Environmental-induced sudden death of entanglement. Science 316, 579–582 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Yu, T., Eberly, J.H.: Quantum open system theory:bipartite aspects. Phys. Rev. Lett. 97, 140403 (2007)CrossRefGoogle Scholar
  7. 7.
    Eberly, J.H., Yu, T.: The end of entanglement. Science 316, 555 (2007)CrossRefGoogle Scholar
  8. 8.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental vertification of decoherence-free subspaces. Science 290, 498 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    Aharonov, Y., Albert, D.Z., Casher, A., Vaidman, L.: Surprising quantum effects. Phys. Lett. A 124, 199 (1987)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81(R), 040103 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Sun, Q.Q., Al-Amri, Q.M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Man, Z.X., Xia, Y.J.: Manipulating entanglement of two qubits in a commom environment by means of weak measurement and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Li, W.J., He, Z., Wang, Q.P.: Protecting distribution entanglement for two-qubit state using weak measurement and reversal. Int. J. Theor. Phys. 56, 2813–2824 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, Q., Tang, J.S., He, Z., Yuan, J.B.: Protecting entanglement in a common phase decoherence environment using weak measurement and quantum measurement reversal. Int. J. Theor. Phys. 57, 2365–2372 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wu, H.J., Jin, Z., Zhu, A.D.: Protection of telecloning over noisy channels with environment-assisted measurements and weak measurements. Int. J. Theor. Phys. 57, 1235–1244 (2018)CrossRefzbMATHGoogle Scholar
  24. 24.
    Guan, S.Y., Jin, Z., Wu, H.J., Zhu, A.D., Wang, H.F., Zhang, S.: Restoration of three-qubit entanglements and protection of tripartite quantum state sharing over noisy channels via environment-assisted measurement and reversal weak measurement. Quantum Inf. Process 16, 137 (2017)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Xiao, X.: Protecting qubit-qutrit entanglement from amplitude damping decoherence via weak measurement and reversal. Phys. Scr. 89, 065102 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Guo, J.L., Li, H., Long, G.L.: Decoherent dynamics of quantum correlations in qubit-qutrit systems. Quantum Inf. Process 12, 3421 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Zou, W.J., Li, Y.H., Wang, S.C., Cao, Y., Ren, J.G., Yin, J., Peng, C.Z., Wang, X.B., Pan, J.W.: Protecting entanglement from finite temperature thermal noise via weak measurement and quantum measurement reversal. Phys. Rev. A 95, 042342 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Guo, J.L., Wei, J.L., Qin, W.: Enhancement of quantum correlations in qubit-qutrit systems under decoherence of finite temperature. Quantum Inf. Process 14, 4 (2015)zbMATHGoogle Scholar
  31. 31.
    Hioe, F.T., Eberly, J.H.: N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47, 838 (1981)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Checinska, A., Wodkiewicz, K.: Separability of entangled qutrits in noisy channels. Phys. Rev. A 76, 052306 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and EngineeringQufu Normal UniversityQufuChina
  2. 2.Shandong Provincial Key Laboratory of Laser Polarization and Information TechnologyQufu Normal UniversityQufuChina

Personalised recommendations