Skip to main content

Charged Particles pT Spectra and the Correlation between pT and all Charged Particles at √S = 900 GeV


The transverse momentum (pT) spectra, covering a region of 0.15–10 GeV/c, of charged particles as well as the correlation between the average transverse momentum <pT > and all charged particles (Nch) in pp collision at 900 GeV/c are investigated. Simulations by hadron production models are compared with the measurements of ALICE Collaboration. Qualitatively, all models’ predictions are in good agreement with experimental data for the pT distributions of invariant yield of all charged hadrons. For the <pT > as a function Nch presented in two pT regions, 0.15 < pT < 4 and 0.5 < pT < 4, the EPOS models, and HIJING produced good predictions of the experimental measurements as compared to QGSJETII-04 and Sibyll2.3c. Although the models’ prediction is compatible with the experimental data, none of them is enough comprehensive to provide complete description of all measurements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Engel, R., Ranft, J., Roesler, S.: Hard diffraction in hadron-hadron interactions and in photoproduction. Phys. Rev. D. 52, 1459–1468 (1995)

    Article  ADS  Google Scholar 

  2. Sjöstrand, T., Mrenna, S., Skands, P.: J. High Energy Phys. 0605, 026 (2006)

    Article  ADS  Google Scholar 

  3. Ajaz, M., Tufail, M., Ali, Y.: Mod. Phys. Lett. A. 34, 1950100 (2019)

    Article  ADS  Google Scholar 

  4. Ajaz, M., Bilal, M., Ali, Y., Suleymanov, M.K., Khan, K.H.: Mod. Phys. Lett. A. 34, 1950090 (2019)

    Article  ADS  Google Scholar 

  5. Ali, Q., Ali, Y., Haseeb, M., Tabassam, U., Ajaz, M., Ullah, S.: Study of transverse momentum distributions inp−Pbinteractions at 0.9 TeV and 5.02 TeV. Mod. Phys. Lett. A. 33, 1850179 (2018)

    Article  ADS  Google Scholar 

  6. Ullah, S., Ajaz, M., Ali, Y.: Spectra of strange hadrons and their role in neutrinos flux prediction. EPL. 123, 31001 (2018)

    Article  ADS  Google Scholar 

  7. Ullah, S., Ali, Y., Ajaz, M., Tabassam, U., Ali, Q.: π±, K±, protons and antiprotons production in proton–carbon interactions at 31 GeV/c using hadron production models. Int. J. Mod. Phys. A. 33, 1850108 (2018)

    Article  ADS  Google Scholar 

  8. K. Aamodt et al. (ALICE Collaboration) Phys. Lett. B 693, 53–68 (2010)

  9. Werner, K., Liu, F.M., Pierog, T.: Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev., C. 74, 044902 (2006)

    Article  ADS  Google Scholar 

  10. Werner, K.: Core-Corona Separation in Ultrarelativistic Heavy Ion Collisions. Phys. Rev. Lett. 98, 152301 (2007)

    Article  ADS  Google Scholar 

  11. Pierog, T., Werner, K.: EPOS model and ultra high energy cosmic rays. Nucl. Phys. Proc. Suppl. 196, 102–105 (2009)

    Article  ADS  Google Scholar 

  12. Pierog, T., Karpenko, I., Katzy, J.M., Yatsenko, E., Werner, K.: EPOS LHC: test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C. 92, 034906 (2015)

    Article  ADS  Google Scholar 

  13. Wang, X.-N.: Role of multiple minijets in high-energy hadronic reactions. Phys. Rev. D. 43, 104–112 (1991)

    Article  ADS  Google Scholar 

  14. Wang, X.-N., Gyulassy, M.: hijing: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D. 44, 3501–3516 (1991)

    Article  ADS  Google Scholar 

  15. Wang, X.-N., Gyulassy, M.: Systematic study of particle production in p+p (p¯) collisions via the HIJING model. Phys. Rev. D. 45, 844–856 (1992)

    Article  ADS  Google Scholar 

  16. Pierog, T. et al.: arXiv:1306.0121v2 [hep-ph], (2013)

  17. Kalmykov, N.N., et al.: Bull. Russ. Acad. Sci. Phys. 58, 1966 (1994)

    Google Scholar 

  18. Ostapchenko, S.: Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model. Phys. Rev. D. 83, 014018 (2011)

    Article  ADS  Google Scholar 

  19. Engel, R., Gaisser, T. K., Riehn, F., Stanev, T.: Proc. 34th Int. Cosmic Ray Conf., The Hague (Netherlands), 1 (2015) 1313

  20. Ahn, E.-J., Engel, R., Gaisser, T.K., Lipari, P., Stanev, T.: Cosmic ray interaction event generator SIBYLL 2.1. Phys. Rev. D. 80, 094003 (2009)

    Article  ADS  Google Scholar 

  21. Buckley, A., Butterworth, J., Grellscheid, D., Hoeth, H., Lönnblad, L., Monk, J., Schulz, H., Siegert, F.: Rivet user manual. Comput. Phys. Commun. 184, 2803–2819 (2013)

    Article  ADS  Google Scholar 

  22. Skands, P.: Contribution to the 1st International Workshop on Multiple Partonic Interactions at the LHC, Perugia, Italy: Fermilab-Conf-09-113-T. In: arXiv:0905.3418 [Hep-Ph] (Oct. 2008)

    Google Scholar 

  23. ATLAS Collaboration, A: Moraes. In: ATLAS Note ATL-COM-PHYS-2009-119 (2009)

    Google Scholar 

  24. Albrow, M., et al.: Tevatron-for-LHC conference report of the QCD working group, Fermilab-Conf-06-359, hep-ph/0610012; T. Sjöstrand, P. Skands. Eur. Phys. J. C. 39, 129 (2005)

    Article  Google Scholar 

Download references


This work is supported by the Higher Education Commission (HEC) of Pakistan by the Grant No. 20-3379/NRPU/R&D/HEC/2014.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Muhammad Ajaz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ajaz, M., Khan, I., Ali, Y. et al. Charged Particles pT Spectra and the Correlation between pT and all Charged Particles at √S = 900 GeV. Int J Theor Phys 58, 2027–2032 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Charged hadrons
  • LHC energies
  • Models predictions


  • 13.85.Ni
  • 14.20.-c
  • 14.40.-n