Skip to main content
Log in

Novel Efficient Circuit Design for Multilayer QCA RCA

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The novel emerging technology, QCA technology, is a candidate for replacing CMOS technology. Full Adder (FA) circuits are also widely used circuits in arithmetic circuits design. In this paper, two new multilayer QCA architectures are presented: one-bit FA and 4-bit Ripple Carry Adder (RCA). The designed one-bit multilayer FA architecture is based on a new XOR gate architecture. The designed 4-bit multilayer QCA RCA is also developed based on the designed one-bit multilayer QCA FA. The functionality of the designed architectures are verified using QCADesigner tool. The results indicate that the designed architecture for 4-bit multilayer QCA RCA requires 5 clock phases, 125 QCA cells, and 0.17 μm2 area. The comparison results confirm that the designed architectures provide improvements compared with other adder architectures in terms of cost, cell count, and area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Compano, R., Molenkamp, L., Paul, D.: Roadmap for nanoelectronics. European commission IST programme, future and emerging technologies (2000)

  2. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4(1), 49–57 (1993)

    Article  ADS  Google Scholar 

  3. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85(4), 541–557 (1997)

    Article  Google Scholar 

  4. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: A novel design of 5-input majority gate in quantum-dot cellular automata technology. In: Computer Applications & Industrial Electronics (ISCAIE), 2017 IEEE Symposium on 2017, Pp. 13–16. IEEE (2017)

  5. Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano- Electron. Phys. 9(1), 1012–1011 (2017)

    Article  Google Scholar 

  6. Rashidi, H., Rezai, A.: High-performance full adder architecture in quantum-dot cellular automata. J. Eng. 1(1), (2017)

  7. Mokhtari, D., Rezai, A., Rashidi, H., Rabiei, F., Emadi, S., Karimi, A.: Design of novel efficient full adder architecture for quantum-dot cellular automata technology. Facta Univ. Ser.: Electron. Energ. (FU Elec. Energ). 31(2), 279–285 (2018)

    Article  Google Scholar 

  8. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys. 7, 1389–1395 (2017)

    Article  ADS  Google Scholar 

  9. Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)

    Article  Google Scholar 

  10. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  11. Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)

    Article  Google Scholar 

  12. Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays. 7(2), 177–189 (2012)

    Google Scholar 

  13. Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)

    Article  Google Scholar 

  14. Niknezhad Divshali, M., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57, 3326–3339 (2018). https://doi.org/10.1007/s10773-018-3846-8

    Article  MathSciNet  Google Scholar 

  15. Ahmad, F., Bhat, G.M., Ahmad, P.Z.: Novel adder circuits based on quantum-dot cellular automata (QCA). Circuits Syst. 5(06), 142–152 (2014)

    Article  Google Scholar 

  16. Arani, I.E., Rezai, A.: Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology. J. Comput. Electron. 1–9 (2018)

  17. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  18. Balali, M., Rezai, A.: Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. Int. J. Theor. Phys. 1–13 (2018)

  19. Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H., Sayedsalehi, S.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015)

    Article  Google Scholar 

  20. Mustafa, M., Beigh, M.: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count. (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalhossein Rezai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshany, H.R., Rezai, A. Novel Efficient Circuit Design for Multilayer QCA RCA. Int J Theor Phys 58, 1745–1757 (2019). https://doi.org/10.1007/s10773-019-04069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04069-9

Keywords

Navigation