Skip to main content
Log in

Quantum Heat Engine Based on Working Substance of Two Particles Heisenberg XXX Model with the Dzyaloshinskii-Moriya Interaction

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A quantum heat engine (QHE) with a working substance of two-particle \( \left(\frac{1}{2},1\right) \) Heisenberg XXX model with Dzyaloshinskii–Moriya (DM) interaction in the external magnetic field B is studied, and the influences of the DM interaction on the efficiency, work are examined under different coupling strengths. The results show that the QHE can operate and produce positive work and the efficiency on the two magnetic field conditions B1 < B2 and B1 > B2. Moreover, the efficiency can achieve the large value and several interesting effects of the DM interaction on the local work are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  2. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev. E 76, 030015 (2007)

    Article  Google Scholar 

  3. Scully, M.O.: Phys. Rev. Lett. 87, 220601 (2001)

    Article  ADS  Google Scholar 

  4. Bender, C.M., Brody, D.C., Meister, B.K.: J. Phys.A: Math. Gen. 33, 4427 (2000)

    Article  ADS  Google Scholar 

  5. Quan, H.T., Zhang, P., Sun, C.P.: Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  6. He, J.Z., Chen, J.C., Hua, B.: Phys. Rev. E 65, 036145 (2002)

    Article  ADS  Google Scholar 

  7. Wu, F., Chen, L.G., Sun, F., Wu, C., Li, Q.: Phys. Rev. E 73, 016103 (2006)

    Article  ADS  Google Scholar 

  8. Feldmann, T., Kosloff, R.: Phys. Rev. E 61, 4774 (2000)

    Article  ADS  Google Scholar 

  9. Feldmann, T., Kosloff, R.: Phys. Rev. E 68, 016101 (2003)

    Article  ADS  Google Scholar 

  10. Feldmann, T., Kosloff, R.: Phys. Rev. E 70, 046110 (2004)

    Article  ADS  Google Scholar 

  11. Wu, F., Chen, L.G., Wu, S., Sun, F.R., Wu, C.: J. Chem. Phys. 124, 214702 (2006)

    Article  ADS  Google Scholar 

  12. Wang, J., He, J., Xin, Y.: Phys. Scr. 75, 227 (2007)

    Article  ADS  Google Scholar 

  13. Wu, F., Chen, L.G., Wu, S., Sun, F.R.: J. Phys. D: Appl. Phys. 39, 4731 (2006)

    Article  ADS  Google Scholar 

  14. He, J.Z., Xin, Y., He, X.: Appl. Energy 84, 176 (2007)

    Article  Google Scholar 

  15. Thomas, G., Johal, R.S.: Phys. Rev. E 83, 031135 (2011)

    Article  ADS  Google Scholar 

  16. Geva, E., Kosloff, R.: J. Chem. Phys. 97, 4398 (1992)

    Article  ADS  Google Scholar 

  17. Lin, B.H., Chen, J.C.: Phys. Rev. E 67, 046105 (2003)

    Article  ADS  Google Scholar 

  18. Lin, B.H., Chen, J.C.: Phys. Scr. 71, 12 (2005)

    Article  ADS  Google Scholar 

  19. Wang, J.H., He, J.Z., Mao, Z.Y.: Science in China Series G: Phys. Mech. Astro. 50, 163 (2007)

    Article  ADS  Google Scholar 

  20. He, J.Z., He, X., Tang, W.: Science in China Series G: Phys. Mech. Astro. 52, 1317 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rezek, Y., Kosloff, R.: New J. Phys. 8, 1 (2006)

    Article  MathSciNet  Google Scholar 

  22. Lin, S., Song, Z.: J. Phys. A 49, 475301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Huang, X.L., Wang, T., Yi, X.X.: Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  24. Robnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  25. Long, R., Liu, W.: Phys. Rev. E 91, 062137 (2015)

    Article  ADS  Google Scholar 

  26. Manzano, G., Galve, F., Zambrini, R., Parrondo, J.M.R.: Phys. Rev. E 93, 052120 (2016)

    Article  ADS  Google Scholar 

  27. Zagoskin, A.M., Savelev, S., Nori, F., Kusmartsev, F.V.: Phys. Rev. B 86, 014501 (2012)

    Article  ADS  Google Scholar 

  28. Zhang, X.Y., Huang, X.L., Yi, X.X.: J. Phys. A 47, 455002 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dzyaloshinskii, I.: J. Phys. Chem. 4, 241 (1958)

    Google Scholar 

  30. Moriya, T.: Phys. Rev. Lett. 4, 228 (1960)

    Article  ADS  Google Scholar 

  31. Liu, H.P., Plascak, J.A., Landau, D.P.: Phys. Rev. E 97, 052118 (2018)

  32. Wang, Q., Cao, D., Quan, H.T.: Phys. Rev. E 98, 022107 (2018)

  33. Zhao, L.M., Zhang, G.F.: Quantum Inf. Process 16, 216 (2017)

    Article  ADS  Google Scholar 

  34. Huang, X.L., Sun, Q., Guo, D.Y., Yu, Q.: Physica A 491, 604–612 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zhang, G.F.: Eur. Phys. J. D 49, 123 (2008)

    Article  ADS  Google Scholar 

  36. Altintas, F.: Phys. Rev. E 92, 022142 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Kleinbolting, S., Klesse, R.: Phys. Rev. E 91, 052101 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Prokofev, N.V., Stamp, P.C.E.: Rep. Prog. Phys. 63, 669 (2000)

    Article  ADS  Google Scholar 

  39. Bortz, M., Stolze, J.: J. Stat. Mech. 06, P06018 (2007)

    Google Scholar 

  40. Xu, S., Song, X.K., Ye, L.: Quantum Inf. Process 13, 1013–1024 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  41. Thomas, G., Johala, R.S.: Eur. Phys. J. B 87, 166 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No.11374096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Fa Fang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, HP., Fang, MF. & Zhang, CY. Quantum Heat Engine Based on Working Substance of Two Particles Heisenberg XXX Model with the Dzyaloshinskii-Moriya Interaction. Int J Theor Phys 58, 1651–1658 (2019). https://doi.org/10.1007/s10773-019-04061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04061-3

Keywords

Navigation