A Matrix Representation of Quantum Circuits over Non-Adjacent Qudits

Abstract

Within the general context of the architecture in quantum computer design, this paper aims is to provide a general strategy to obtain a block-matrix representation of quantum gates applied to qubits placed in arbitrary positions over an arbitrary dimensional input state. The model is also extended to the framework of quantum computation with qudits. An application in the context of the quantum computational logic is provided.

This is a preview of subscription content, log in to check access.

Fig. 1

Notes

  1. 1.

    As an example, an introductory result was developed by Wilmott [32] that showed how to represent an arbitrary SWAP gate between two qudits by involving CNot gates only and by following combinatorial considerations. In this paper we follow a different approach, providing a block-matrix representation of arbitrary unitary operators without involving the composition of other control gates.

  2. 2.

    From now on, let us assume that any qubit is written in the canonical basis \(\mathcal B=\{\vert 0\rangle =\left (\begin {array}{cc} 1 \\ 0 \end {array}\right ), \vert 1\rangle =\left (\begin {array}{cc} 0 \\ 1 \end {array}\right )\}\).

  3. 3.

    Let us give a slight abuse of the terms target and control according with the convention that the control position is related to the qubit that is not affected by the gate, otherwise we speak about target position.

References

  1. 1.

    Bernstein, D.: Matrix mathematics. Princeton University Press, Princeton (2005)

  2. 2.

    Broadbent, A., Kashefi, E.: Parallelizing quantum circuits. Theoret. Comput. Sci. 410(26, 6), 2489–2510 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bishop, L.S., Tornberg, L., Price, D., Ginossar, E., Nunnenkamp, A., Houck, A.A., Gambetta, J.M., Koch, J., Johansson, G., Girvin, S.M., Schoelkopf, R.J.: Proposal for generating and detecting multi-qubit GHZ states in circuit QED. New J. Phys. 11, 073040 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    Castagnoli, G.: Completing the physical representation of quantum algorithms provides a quantitative explanation of their computational speedup. Found. Phys. 48(3), 333–354 (to appear)

  5. 5.

    Cheung, D., Maslov, D., Severini, S.: Translation techniques between quantum circuit architectures (2007)

  6. 6.

    Cohen, I., Weidt, S., Hensinger, W.K., Retzker, A.: Multi-qubit gate with trapped ions for microwave and laser-based implementation. New J. Phys. 17, 043008 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in quantum theory: sharp and unsharp quantum logic. Trends in Logic. Springer, Berlin (2004)

    Google Scholar 

  8. 8.

    Dalla Chiara, M.L., Giuntini, R., Leporini, R., Sergioli, G.: Quantum computation and logic; how quantum computers have inspired logical investigations trends in logic n.48. Springer, Berlin (2018)

    Google Scholar 

  9. 9.

    Dalla Chiara, M.L., Giuntini, R., Sergioli, G., Leporini, R.: A many-valued approach to quantum computational logic. Fuzzy Sets ans Systems 335, 94–111 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Freytes, H., Giuntini, R., Leporini, R., Sergioli, G.: Entanglement and quantum logical gates. Part I Int. J. Theor. Phys. 54(12), 3880–3888 (2015)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Fowler, A.G., Hill, C.D., Hollenberg, L.C.L.: Quantum error correction on linear neares neighbor qubit arrays. Phys. Rev. A 69, 042314.1–042314.4 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    Fuchs, J.: Affine lie algebras and quantum groups. Cambridge University Press, Cambridge (1992)

  13. 13.

    Garcia-Escartin, J.C., Chamorro-Posada, P.: A SWAP gate for qudits. Quantum Inf. Process 12, 3625–3631 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Gerdt, V.P., Prokopenya, A.N.: The circuit model of quantum computation and its simulation with mathematica, Mathematical Modelling and Computer Science, pp 43–55. LNCS-Springer, Berlin (2011)

    Google Scholar 

  15. 15.

    Gerdt, V.P., Kragler, R., Prokopenya, A.N.: A Mathematica program for constructing quantum circuits and computing their unitary matrices. Phys. Part. Nucl. Lett. (Springer) 6, 526 (2009)

    Article  Google Scholar 

  16. 16.

    Gerdt, V.P., Kragler, R., Prokopenya, A.N.: A mathematica package for simulation of quantum computation. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing. CASC 2009. Lecture Notes in Computer Science, vol. 5743. Springer, Berlin (2009)

  17. 17.

    Giuntini, R., Ledda, A., Sergioli, G., Paoli, F.: Some generalizations of fuzzy structures in quantum computational logic. Int. J. Gen. Syst. 40(1), 61–83 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., Chek al kar, D., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multipartite entanglement of trapped ions. Nature 438, 643–646 (2005)

    ADS  Article  Google Scholar 

  19. 19.

    Hirvensalo, M.: Quantum computing, natural computing series. Springer, Berlin (2001)

    Google Scholar 

  20. 20.

    Jozsa, R., Miyake, A.: Matchgates and classical simulation of quantum circuits. Proc. R. Soc. A 464, 3089–3106 (2008)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Kane, B.: A solicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    ADS  Article  Google Scholar 

  22. 22.

    Kumar, P.: Efficient quantum computing between remote qubits in linear nearest neighbor architectures. Quantum Inf. Process 12-4, 1737–1757 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Laforest, M., Simon, D., Boileau, J.C., Baugh, J., Ditty, M., Laflamme, R.: Using error correction to determine the noise model. Phys. Rev. A 75, 133–137 (2007)

    Article  Google Scholar 

  24. 24.

    Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K. A., Wright, K., Monroe, C.: Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. USA 114(13), 3305–3310 (2017)

    Article  Google Scholar 

  25. 25.

    Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multi-qubit gates. Phys. Rev. Lett. 93, 130502 (2004)

    Article  Google Scholar 

  26. 26.

    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  27. 27.

    Sergioli, G.: Towards a multi target quantum computational logic. Foundations of Sciences (to appear https://doi.org/10.1007/s10699-018-9569-8)

  28. 28.

    Sergioli, G., Ledda, A.: A note on many valued quantum computational logics. Soft. Comput. 21, 1391–1400 (2017)

    Article  MATH  Google Scholar 

  29. 29.

    Sergioli, G., Leporini, R.: Quantum approach to epistemic semantics. Soft. Comput. 21-6, 1381–1390 (2017)

    Article  MATH  Google Scholar 

  30. 30.

    Takahashi, Y., Kunihiro, N., Ohta, K.: The quantum Fourier transform on a linear nearest neighbor architecture. Quantum Inf. Comput. 7, 383–391 (2007)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Qudit quantum-state tomography. Phys. Rev. A 66, 012303 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Wilmott, C.M.: On swapping the states of two qudits. Int. J. Quant. Inf., vol. 9–1511 (2011)

  33. 33.

    Zhang, J., Liu, W., Deng, Z., Lu, Z., Lu Long, G.: Modularization of the multi-qubit controlled phase gate and its NMR implementation, arXiv:quant-ph/0406209v2 (2004)

  34. 34.

    Zhang, Z., Liu, Y., Wang, D.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372(1), 28–32 (2007)

    ADS  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Regione Autonoma della Sardegna in the framework of the project “Time-logical evolution of correlated microscopic systems” (CRP 55, L.R. 7/2007, 2015) and by Fondazione Banco di Sardegna in the framework of the project “Strategies and Technologies for Scientific Education and Dissemination”, cup: F71I17000330002.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Sergioli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sergioli, G. A Matrix Representation of Quantum Circuits over Non-Adjacent Qudits. Int J Theor Phys (2019). https://doi.org/10.1007/s10773-019-04051-5

Download citation

Keywords

  • Quantum circuit
  • Block-matrix representation
  • Quantum computational logic