Skip to main content
Log in

Improving the Secure Key Rate and Error Tolerance of the Interferometer-Based Time-Frequency Encoding QKD System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The interferometer-based, time-frequency encoding quantum key distribution (TF-QKD) scheme is a promising way to loosen up the restrict resolution requirement for the temporal measurement in TF-QKD protocol. However, the utilization of delay interferometers in the existing schemes causes lower efficiency of the frequency measurement, so it would decrease the secure key generation rate and the error tolerance. In order to improve this imperfection, we propose two kinds of schemes, one is the pre-balance TF scheme (PB-TF), in which Alice actively adjusts the probability distributions of sending photons encoded in two bases. The other one is the non-delay interferometer based TF scheme (NDI-TF), in this scheme the signals are converted from serial to parallel before entering the interferometers which eliminates the extra loss of the frequency measurement with delay interferometers. We theoretically verify the performance improvement of both schemes and discuss their advantages under the practical application scenario. The simulation results show that both of the schemes can improve the secure key generation rate and the error tolerance, but the NDI-TF scheme has higher secure key generation rate especially in the high-dimensional encoding QKD systems. As for the low-dimensional system, the PB-TF scheme is preferred since its performance is comparable to the NDI-TF scheme but with low cost and easy to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bao, H., Bao, W., Wang, Y., Chen, R., Zhou, C., Jiang, M., Li, H.: Detector-decoy high-dimensional quantum key distribution. Opt. Express 24(19), 22159–22168 (2016). https://doi.org/10.1364/OE.24.022159. http://www.opticsexpress.org/abstract.cfm?URI=oe-24-19-22159

  2. Bechmann-Pasquinucci, H., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A 61, 062308 (2000). https://doi.org/10.1103/PhysRevA.61.062308

    Article  ADS  MathSciNet  Google Scholar 

  3. Bedington, R., Arrazola, J.M., Ling, A.: Progress in satellite quantum key distribution. Npj Quantum Information 3(30) (2017). https://doi.org/10.1038/s41534-017-0031-5

  4. Bourennane, M., Karlsson, A., Björk, G.: Quantum key distribution using multilevel encoding. Phys. Rev. A 64, 012306 (2001). https://doi.org/10.1103/PhysRevA.64.012306

    Article  ADS  Google Scholar 

  5. Bourennane, M., Karlsson, A., Björk, G., Gisin, N., Cerf, N.J.: Quantum key distribution using multilevel encoding: security analysis. J. Phys. A Math. Gen. 35 (47), 10065 (2002). http://stacks.iop.org/0305-4470/35/i=47/a=307

  6. Cañas, G., Vera, N., Cariñe, J., González, P., Cardenas, J., Connolly, P.W.R., Przysiezna, A., Gómez, E.S., Figueroa, M., Vallone, G., Villoresi, P., da Silva, T.F., Xavier, G.B., Lima, G.: High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys. Rev. A 96, 022317 (2017). https://doi.org/10.1103/PhysRevA.96.022317

    Article  ADS  Google Scholar 

  7. Comandar, L.C., Dynes, J.F., Sharpe, A.W., Lucamarini, M., Yuan, Z.L., Penty, R.V.: Gigahertz-gated InGaAs / InP single-photon detector with detection efficiency exceeding 55 % at 1550 nm. J. Appl. Phys. 117(8), 083109 (2015). https://doi.org/10.1063/1.4913527

    Article  ADS  Google Scholar 

  8. Donnelly, T.D., Grossman, C.: Ultrafast phenomena: a laboratory experiment for undergraduates. Am. J. Phys. 66(8), 677–685 (1998). https://doi.org/10.1119/1.18932

    Article  ADS  Google Scholar 

  9. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)

    Article  ADS  Google Scholar 

  10. Dynes, J.F., Kindness, S.J., Tam, S.W.B., Plews, A., Sharpe, A.W., Lucamarini, M., Fröhlich, B., Yuan, Z.L., Penty, R.V., Shields, A.J.: Quantum key distribution over multicore fiber. Opt. Express 24(8), 8081–8087 (2016). https://doi.org/10.1364/OE.24.008081. http://www.opticsexpress.org/abstract.cfm?URI=oe-24-8-8081

  11. Etcheverry, S., Cañas, G., Gómez, E. S., Nogueira, W.A.T., Saavedra, C., Xavier, G.B., Lima, G.: Quantum key distribution session with 16-dimensional photonic states. Sci Rep 3(31), 2316 (2013)

    Article  Google Scholar 

  12. Fan-Yuan, G.J., Wang, C., Wang, S., Yin, Z.Q., Liu, H., Chen, W., He, D.Y., Han, Z.F., Guo, G.C.: Afterpulse analysis for quantum key distribution. Phys. Rev. Applied 10, 064032 (2018). https://doi.org/10.1103/PhysRevApplied.10.064032

  13. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  MATH  Google Scholar 

  14. He, D.Y., Wang, S., Chen, W., Yin, Z.Q., Qian, Y.J., Zhou, Z., Guo, G.C., Han, Z.F.: Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse. Appl. Phys. Lett. 110(11), 111104 (2017). https://doi.org/10.1063/1.4978599

    Article  ADS  Google Scholar 

  15. Huang, W., Xu, B.J., Duan, J.T., Liu, B., Su, Q., He, Y.H.: Authenticated quantum key distribution with collective detection using single photons. Int. J. Theor. Phys. 55(10), 4238–4256 (2016). https://doi.org/10.1007/s10773-016-3049-0

    Article  MATH  Google Scholar 

  16. Islam, N.T., Cahall, C., Aragoneses, A., Lezama, A., Kim, J., Gauthier, D.J.: Robust and stable delay interferometers with application to d-dimensional time-frequency quantum key distribution. Phys. Rev. Applied 7, 044010 (2017). https://doi.org/10.1103/PhysRevApplied.7.044010

    Article  ADS  Google Scholar 

  17. Islam, N.T., Cahall, C., Aragoneses, A., Lim, C.C.W., Allman, M.S., Verma, V., Nam, S.W., Kim, J., Gauthier, D.J.: Discrete-Variable Time-Frequency Quantum Key Distribution. In: Conference on Lasers and Electro-Optics, P. FTh3c.3. Optical Society of America (2016)

  18. Islam, N.T., Cahall, C., Aragoneses, A., Lezama, A., Kim, J., Gauthier, D.J.: Enhancing the secure key rate in a quantum-key-distribution system using discrete-variable, high-dimensional, time-frequency states. In: Proceedings of the SPIE, vol. 9996, p. 99960C. https://doi.org/10.1117/12.2241429 (2016)

  19. Islam, N.T., Lim, C.C.W., Cahall, C., Kim, J., Gauthier, D.J.: Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3(11), e1701491 (2017). https://doi.org/10.1126/sciadv.1701491. http://advances.sciencemag.org/content/3/11/e1701491

    Article  ADS  Google Scholar 

  20. Ji, Y.F., Zhang, J.W., Zhao, Y.L., Yu, X.S., Zhang, J., Chen, X.: Prospects and research issues in multi-dimensional all optical networks. Sci China Inf Sci 59(10), 101301 (2016). https://doi.org/10.1007/s11432-016-0324-7

    Article  Google Scholar 

  21. Leifgen, M., Elschner, R., Perlot, N., Weinert, C., Schubert, C., Benson, O.: Practical implementation and evaluation of a quantum-key-distribution scheme based on the time-frequency uncertainty. Phys. Rev. A 92, 042311 (2015). https://doi.org/10.1103/PhysRevA.92.042311

    Article  ADS  Google Scholar 

  22. Li, Y.H., Cao, Y., Dai, H., Lin, J., Zhang, Z., Chen, W., Xu, Y., Guan, J.Y., Liao, S.K., Yin, J., Zhang, Q., Ma, X., Peng, C.Z., Pan, J.W.: Experimental round-robin differential phase-shift quantum key distribution. Phys. Rev. A 93, 030302 (2016). https://doi.org/10.1103/PhysRevA.93.030302

    Article  ADS  Google Scholar 

  23. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., Li, F.Z., Chen, X.W., Sun, L.H., Jia, J.J., Wu, J.C., Jiang, X.J., Wang, J.F., Huang, Y.M., Wang, Q., Zhou, Y.L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.A., Liu, N.L., Wang, X.B., Zhu, Z.C., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43 (2017)

    Article  ADS  Google Scholar 

  24. Lin, S., Guo, G.D., Gao, F., Liu, X.F.: Quantum key distribution: Defeating collective noise without reducing efficiency. Quantum Info. Comput. 14(9&10), 845–856 (2014). http://dl.acm.org/citation.cfm?id=2638670.2638679

  25. Lin, S., Huang, C., Liu, X.F.: Multi-user quantum key distribution based on Bell states with mutual authentication. Physica Scripta 87(3), 035008 (2013). http://stacks.iop.org/1402-4896/87/i=3/a=035008

  26. Lin, S., Liu, X.F.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack. Int. J. Theor. Phys. 51 (8), 2514–2523 (2012). https://doi.org/10.1007/s10773-012-1131-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Lo, H.K., Chau, H., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2005). https://doi.org/10.1007/s00145-004-0142-y

    Article  MathSciNet  MATH  Google Scholar 

  28. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012). https://doi.org/10.1103/PhysRevLett.108.130503

    Article  ADS  Google Scholar 

  29. Ma, X.F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005). https://doi.org/10.1103/PhysRevA.72.012326

    Article  ADS  Google Scholar 

  30. Mirhosseini, M., Magaña-Loaiza, O.S., O’Sullivan, M.N., Brandon, R., Malik, M., Martin, P.J.L., Padgett, M.J., Gauthier, D.J., Boyd, R.W.: High-dimensional quantum cryptography with twisted light. New J. Phys. 17(3), 033033 (2015). http://stacks.iop.org/1367-2630/17/i=3/a=033033

    Article  ADS  MathSciNet  Google Scholar 

  31. Mora, J., Amaya, W., Ruiz-Alba, A., Martinez, A., Calvo, D., noz, V.G.M., Capmany, J.: Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON. Opt. Express 20(15), 16358–16365 (2012). https://doi.org/10.1364/OE.20.016358. http://www.opticsexpress.org/abstract.cfm?URI=oe-20-15-16358

  32. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112(25), 250501 (2014)

    Article  ADS  Google Scholar 

  33. Nakamura, S., Ueno, Y., Tajima, K.: Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach–Zehnder-type all-optical switch. Appl. Phys. Lett. 78(25), 3929–3931 (2001). https://doi.org/10.1063/1.1379790

    Article  ADS  Google Scholar 

  34. Nashimoto, K., Tanaka, N., LaBuda, M., Ritums, D., Dawley, J., Raj, M., Kudzuma, D., Vo, T.: High-Speed PLZT Optical Switches for Burst and Packet Switching. In: 2nd International Conference on Broadband Networks, 2005., pp. 1118–1123 Vol. 2 (2005), 10.1109/ICBN.2005.1589732

  35. Niu, J.N., Sun, Y.M., Cai, C., Ji, Y.F.: Optimized channel allocation scheme for jointly reducing four-wave mixing and Raman scattering in the DWDM-QKD system. Appl. Opt. 57(27), 7987–7996 (2018). https://doi.org/10.1364/AO.57.007987. http://ao.osa.org/abstract.cfm?URI=ao-57-27-7987

    Article  ADS  Google Scholar 

  36. Rödiger, J., Perlot, N., Benson, O., Freund, R.: Benefits of time-frequency coding for quantum key distribution. In: Proceedings of the SPIE, vol. 10562, p. 105623N. https://doi.org/10.1117/12.2296180 (2017)

  37. Rödiger, J., Perlot, N., Mottola, R., Elschner, R., Weinert, C.M., Benson, O, Freund, R.: Numerical assessment and optimization of discrete-variable time-frequency quantum key distribution. Phys. Rev. A 95, 052312 (2017). https://doi.org/10.1103/PhysRevA.95.052312

    Article  ADS  Google Scholar 

  38. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009). https://doi.org/10.1103/RevModPhys.81.1301

    Article  ADS  Google Scholar 

  39. Song, X.T., Li, H.W., Zhan, C.M., Wang, D., Wang, S., Yin, Z.Q., Chen, W., Han, Z.F: Analysis of Faraday-Michelson quantum key distribution system with unbalanced attenuation. Chin. Opt. Lett. 13(1), 012701–012701 (2015). http://col.osa.org/abstract.cfm?URI=col-13-1-012701

    Article  ADS  Google Scholar 

  40. Stucki, D., Brunner, N., Gisin, N., Scarani, V., Zbinden, H: Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87(19), 194108 (2005). https://doi.org/10.1063/1.2126792

    Article  ADS  Google Scholar 

  41. Sun, Y.M., Lu, Y.S., Niu, J.N., Ji, Y.F.: Reduction of FWM noise in WDM-based QKD systems using interleaved and unequally spaced channels. Chin. Opt. Lett. 14(6), 060602 (2016). https://doi.org/10.3788/COL201614.060602

    Article  Google Scholar 

  42. Wang, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4(9), 1016–1023 (2017). https://doi.org/10.1364/OPTICA.4.001016. http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-9-1016

    Article  Google Scholar 

  43. Wang, S., Chen, W., Guo, J.F., Yin, Z.Q., Li, H.W., Zhou, Z., Guo, G.C., Han, Z.F.: 2 GHz clock quantum key distribution over 260km of standard telecom fiber. Opt. Lett. 37(6), 1008–1010 (2012). https://doi.org/10.1364/OL.37.001008. http://ol.osa.org/abstract.cfm?URI=ol-37-6-1008

    Article  ADS  Google Scholar 

  44. Wang, S., Chen, W., Yin, Z.Q., He, D.Y., Hui, C., Hao, P.L., Fan-Yuan, G.J., Wang, C., Zhang, L.J., Kuang, J., Liu, S.F., Zhou, Z., Wang, Y.G., Guo, G.C., Han, Z.F.: Practical gigahertz quantum key distribution robust against channel disturbance. Opt. Lett. 43(9), 2030–2033 (2018). https://doi.org/10.1364/OL.43.002030. http://ol.osa.org/abstract.cfm?URI=ol-43-9-2030

  45. Wang, S., Chen, W., Yin, Z.Q., Li, H.W., He, D.Y., Li, Y.H., Zhou, Z., Song, X.T., Li, F.Y., Wang, D., Chen, H., Han, Y.G., Huang, J.Z., Guo, J.F., Hao, P.L., Li, M., Zhang, C.M., Liu, D., Liang, W.Y., Miao, C.H., Wu, P., Guo, G.C., Han, Z.F.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22(18), 21739–21756 (2014). https://doi.org/10.1364/OE.22.021739. http://www.opticsexpress.org/abstract.cfm?URI=oe-22-18-21739

  46. Wang, S., Yin, Z.Q., Chau, H.F., Chen, W., Wang, C., Guo, G.C., Han, Z.F.: Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme. Quantum Science and Technology 3(2), 025006 (2018). http://stacks.iop.org/2058-9565/3/i=2/a=025006

    Article  ADS  Google Scholar 

  47. Wang, S., Yin, Z.Q., Chen, W., He, D.Y., Song, X.T., Li, H.W., Zhang, L.J., Zhou, Z., Guo, G.C., Han, Z.F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photonics 9, 832–836 (2015)

    Article  ADS  Google Scholar 

  48. Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67 (1), 2–8 (2018). https://doi.org/10.1109/TC.2017.2721404

    Article  MathSciNet  MATH  Google Scholar 

  49. Yin, Z.Q., Wang, S., Chen, W., Han, Y.G., Wang, R., Guo, G.C., Han, Z.F.: Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nat. Commun. 9(1), 457 (2018)

    Article  ADS  Google Scholar 

  50. Zhao, L.Y., Li, H.W., Yin, Z.Q., Chen, W., You, J., Han, Z.F.: Security of biased BB84 quantum key distribution with finite resource. Chin. Phys. B 23(10), 100304 (2014). http://stacks.iop.org/1674-1056/23/i=10/a=100304

    Article  ADS  Google Scholar 

  51. Zhao, W., Guo, Y., Huang, D., Zhang, L.: Continuous-variable quantum key distribution with orthogonal frequency division multiplexing modulation. Int. J. Theor. Phys. 57, 2956–2967 (2018). https://doi.org/10.1007/s10773-018-3815-2

    Article  Google Scholar 

  52. Zhu, C.H., Pei, C.X., Quan, D.X., Gao, J.L., Chen, N., Yi, Y.H.: A new quantum key distribution scheme based on frequency and time coding. Chin. Phys. Lett. 27(9), 090301 (2010). http://stacks.iop.org/0256-307X/27/i=9/a=090301

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61331008 and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), P. R. China (Grant No. IPOC2017ZZ04). We gratefully acknowledge the enlightening discusses with Fei Gao (Professor of the Beijing University of Posts and Telecommunication).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Mei Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, JN., Sun, YM. & Ji, YF. Improving the Secure Key Rate and Error Tolerance of the Interferometer-Based Time-Frequency Encoding QKD System. Int J Theor Phys 58, 1456–1469 (2019). https://doi.org/10.1007/s10773-019-04033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04033-7

Keywords

Navigation