Skip to main content
Log in

Entanglement Purification on Separate Atoms in an Error-Detected Pattern

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose an entanglement purification protocol (EPP) for purifying separate atoms embedded in single-sided optical cavities. The protocol works in an error-detected pattern, the reflection coefficients only appear as a global coefficient, the success or failure cases are heralded by the detection of photons, these merits make the protocol more robust and practical. We discuss the performance of the protocol with current experimental parameters, the results show the success probability of the present EPP is relatively high. The EPP could provide a promising building block for quantum repeaters and quantum networks in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)

    Article  Google Scholar 

  3. Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  4. Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G., Long, G.L.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345 (2018)

    Article  Google Scholar 

  5. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459–464 (2006)

    Article  ADS  Google Scholar 

  9. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  11. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  12. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  14. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  15. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  16. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China-Phys. Mech. Astron. 60, 120313 (2018)

    Article  Google Scholar 

  17. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China-Phys. Mech. Astron. 61, 090312 (2018)

    Article  Google Scholar 

  18. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  19. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  20. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  21. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  22. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  23. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  24. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  25. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Express 22, 6547–6561 (2014)

    Article  ADS  Google Scholar 

  26. Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)

    Article  ADS  Google Scholar 

  27. Ren, B.C., Wang, H., Alzahrani, F., Hobiny, A., Deng, F.G.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86–94 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  29. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  30. Fujii, K., Yamamoto, K.: Entanglement purification with double selection. Phys. Rev. A 80, 042308 (2009)

    Article  ADS  Google Scholar 

  31. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  32. Simonm, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  33. Cirac, J.I., Ekert, A.K., Macchiavello, C.: Optimal purification of single qubits. Phys. Rev. Lett. 82, 4344 (1999)

    Article  ADS  Google Scholar 

  34. Dür, W., Aschauer, H., Briegel, H.J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91, 107903 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  35. Goyal, K., McCauley, A., Raussendorf, R.: Purification of large bicolorable graph states. Phys. Rev. A 74, 032318 (2006)

    Article  ADS  Google Scholar 

  36. Pan, J.W., Gasparonl, S., Ursin, R., Weihs, G., Zellinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature (London) 423, 417–422 (2003)

    Article  ADS  Google Scholar 

  37. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  38. Wang, C., Zhang, Y., Jin, G.S.: Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Inf. Comput. 11, 988–1002 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Cao, C., Wang, C., He, L.Y., Zhang, R.: Polarization-entanglement purification for ideal sources using weak cross-Kerr nonlinearity. Int. J. Theor. Phys. 52, 1265–1273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)

    Article  ADS  Google Scholar 

  41. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  42. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  43. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  44. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  45. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  46. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)

    Article  ADS  Google Scholar 

  47. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  48. Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Express 23, 9284–9294 (2015)

    Article  ADS  Google Scholar 

  49. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    Article  ADS  Google Scholar 

  50. Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)

    Article  ADS  Google Scholar 

  51. Zhou, L., Sheng, Y.B.: Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state. Ann. Phys. 385, 10 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: Purification of the concatenated Greenberger-Horne-Zeilinger state with linear optics. Quantum Inf. Process. 17, 255 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21, 4093–4105 (2013)

    Article  ADS  Google Scholar 

  54. Wang, C., Zhang, Y., Zhang, R.: Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system. Opt. Express 19, 25685–25695 (2011)

    Article  ADS  Google Scholar 

  55. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  56. Wang, C., Zhang, Y., Jin, G.S., Zhang, R.: Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators. J. Opt. Soc. Am. B 29, 3349–3354 (2012)

    Article  ADS  Google Scholar 

  57. Steane, A.M.: Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322 (2003)

    Article  ADS  Google Scholar 

  58. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012)

    Google Scholar 

  59. Knill, E.: Quantum computing with realistically noisy devices. Nature (London) 434, 39–44 (2005)

    Article  ADS  Google Scholar 

  60. Li, Y., Aolita, L., Chang, D.E., Kwek, L.C.: Robust-fidelity atom-photon entangling gates in the weak-coupling regime. Phys. Rev. Lett. 109, 160504 (2012)

    Article  ADS  Google Scholar 

  61. Li, T., Deng, F.G.: Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities. Phys. Rev. A 94, 062310 (2016)

    Article  ADS  Google Scholar 

  62. Li, T., Yang, G J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93, 012302 (2016)

    Article  ADS  Google Scholar 

  63. Li, T., Deng, F.G.: Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission. Sci. Rep. 5, 15610 (2015)

    Article  ADS  Google Scholar 

  64. Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444–28458 (2016)

    Article  ADS  Google Scholar 

  65. Jiang, Y., Guo, L.P., Gao, C.Y., Wang, H.B., Alzahrani, F., Hobiny, A., Deng, F.G.: Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements. Sci. China-Phys. Mech. Astron. 60, 120312 (2017)

    Article  ADS  Google Scholar 

  66. Duan, L.M., Wang, B., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  67. An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)

    Article  ADS  Google Scholar 

  68. Chen, Q., Yang, W.L., Feng, M., Du, J.F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)

    Article  ADS  Google Scholar 

  69. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  70. Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)

    Article  ADS  Google Scholar 

  71. Walls, D.F., Milburn, G.J.: Quantum optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  72. Loo, V., Lanco, L., Lematire, A., Sagnes, I., Krebs, O., Voisin, P., Senellart, P.: Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar. Appl. Phys. Lett. 97, 241110 (2010)

    Article  ADS  Google Scholar 

  73. Cao, C., Liu, X.H., Duan, Y.W., Chen, X., Zhang, R.: Entanglement concentration of unknown states on separate nitrogen-vacancy centers via error-detected entanglement swapping. Laser Phys. 27, 055202 (2017)

    Article  ADS  Google Scholar 

  74. Although, Alice and Bob cannot distinguish the outcomes of the single-photon measurements with each other in these situations, if the atoms are preserved, after this entanglement purification process, the new fidelity of the atomic qubits that was kept becomes \(F^{\prime }=F^{2}(8\nu ^{2}+ 2\tau ^{2})/[F^{2}(8\nu ^{2}+ 2\tau ^{2})+ 16F(1-F)\nu ^{2}+(1-F)^{2}(8\nu ^{2}+ 2\tau ^{2})]\). Under the ideal situation, i.e., η = 1,Δ = 0, λ 2κ γ, this equation reduces to (23). So the atoms are discarded. This would decrease the success probability of the present EPP but increase the fidelity of the EPP

  75. Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)

    Article  ADS  Google Scholar 

  76. Reithmaier, J.P., Sek, G., Loffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L. V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature (London) 432, 197 (2004)

    Article  ADS  Google Scholar 

  77. Dayan, B., Parkins, A.S., Aoki, T., Ostby, E.P., Vahala, K.I., Kimble, H.J.: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)

    Article  ADS  Google Scholar 

  78. Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Normal-mode spectroscopy of a single-bound-atom-cavity system. Phys. Rev. Lett. 94, 033002 (2005)

    Article  ADS  Google Scholar 

  79. Law, C.K., Eberly, J.H.: Synthesis of arbitrary superposition of Zeeman states in an atom. Opt. Express 2, 368–371 (1998)

    Article  ADS  Google Scholar 

  80. Law, C.K., Eberly, J.H.: Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76, 1055–1058 (1996)

    Article  ADS  Google Scholar 

  81. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)

    Article  ADS  Google Scholar 

  82. Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B 32, 4535–4546 (1999)

    Article  ADS  Google Scholar 

  83. Young, A.B., Thijssen, A.C.T., Beggs, D.M., Androvitsaneas, P., Kuipers, L., Rarity, J.G., Hughes, S., Oulton, R.: Polarization engineering in photonic crystal waveguides for spin-photon entanglers. Phys. Rev. Lett. 115, 153901 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Li-Li Sun for helpful discussions. This work is supported by the Scientific Research Foundation of Shanxi Institute of Technology No. 201706001, the Fund for Shanxi “1331 Project” Key Subjects Construction, the China Postdoctoral Science Foundation under Grant No. 2017M612411, the Education Department Foundation of Henan Province Under Grant No. 18A140009, and the National Natural Science Foundation of China under Grants No. 61821280, 11604190 and No. 61465013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A-Peng Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, AP., Guo, Q., Su, SL. et al. Entanglement Purification on Separate Atoms in an Error-Detected Pattern. Int J Theor Phys 58, 1404–1417 (2019). https://doi.org/10.1007/s10773-019-04030-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04030-w

Keywords

Navigation