Skip to main content
Log in

Non-Classical Correlations and Transfer of Quantum Information in a Superconducting Qubit System with Dynamical Decoupling Pulses

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

We investigate the dynamics of non-classical correlations(entanglement and quantum discord) of the system consisting of two non-interacting superconducting qubits coupling with a common data bus, where the system is driven by the dynamical decoupling pulses. It is found that the non-classical correlations between two superconducting qubits can be increased by appling a train of dynamical decoupling pulses. Furthermore, we also explore the influence of the dynamical decoupling pulses on the information flowing between superconducting qubits and data bus by making use of the trace distance. It is shown that the dynamical decoupling pulses can protect quantum information of two superconducting qubits and force information to flow back to the superconducting qubits from the data bus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Makhlin, Y., SchÖn, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Johansson, J., Saito, S., Meno, T., Nakano, H., Ueda, M., Semba, K., Takayanagi, H.: Phys. Rev. Lett. 96, 127006 (2006)

    Article  ADS  Google Scholar 

  3. Liu, Y.X., Sun, C.P., Nori, F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A. 74, 052321 (2006)

    Article  ADS  Google Scholar 

  4. Wang, D.M., Xu, H.S., Xu, J.B., Yu, Y.H.: Enhancement of geometric discord for the system of superconducting qubits and transfer of quantum information. J. Opt. Soc. Am. B. 30, 2277 (2013)

    Article  ADS  Google Scholar 

  5. Liu, Y. X., Wei, L. F., Johansson, J. R., Tsai, J. S., Nori, F.: Superconducting qubits can be coupled and addressed as trapped ions. Phys. Rev. B. 76, 144518 (2007)

    Article  ADS  Google Scholar 

  6. Kang, Y.H., Chen, Y.H., Wu, Q.C., Huang, B.H., Song, J., Xia, Y.: Fast generation of W states of superconducting qubits with multiple Schrodinger dynamics. Scientific Reports 6, 36737 (2016)

    Article  ADS  Google Scholar 

  7. Nigg, S.E., Fuhrer, A., Loss, D.: Superconducting grid-bus surface code architecture for hole-spin qubits. Phys. Rev. Lett. 118, 147701 (2017)

    Article  ADS  Google Scholar 

  8. Khan, S., Tureci, H.E.: Frequency combs in a lumped-element josephson-junction circuit. Phys. Rev. Lett. 120, 153601 (2018)

    Article  ADS  Google Scholar 

  9. Hime, T., Reichardt, P.A., Plourde, B.L.T., Robertson, T.L., Wu, C.E., Ustinov, A.V., Clarke, J.: Solid-state qubits with current-controlled coupling. Science 314, 1427 (2006)

    Article  ADS  Google Scholar 

  10. Kielpinski, D., Kafri, D., Woolley, M.J., Milburn, G.J., Taylor, J.M.: Quantum interface between an electrical circuit and a single atom. Phys. Rev. Lett. 108, 130504 (2012)

    Article  ADS  Google Scholar 

  11. Motte, D.D., Grounds, A.R., Rehák, M., Rodriguez Blanco, A., Lekitsch, B., Giri, G. S., Neilinger, P., Oelsner, G., Ilichev, E., Grajcar, M., Hensinger, W.K.: Experimental system design for the integration of trapped-ion and superconducting qubit systems. Quantum Inf. Process. 15, 5385 (2016)

    Article  ADS  Google Scholar 

  12. Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: E.:Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature (London). 431, 159 (2004)

    Article  ADS  Google Scholar 

  13. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., OBrien, J.L.: Quantum computers. Nature. 464, 45 (2010)

    Article  ADS  Google Scholar 

  14. Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proc. Nat. Acad. Sci. 112, 3866 (2015)

    Article  ADS  Google Scholar 

  15. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  18. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  19. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)

    Article  ADS  Google Scholar 

  20. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  21. Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A. 80, 024103 (2009)

    Article  ADS  Google Scholar 

  22. Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A. 81, 014101 (2010)

    Article  ADS  Google Scholar 

  23. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A. 81, 052107 (2010)

    Article  ADS  Google Scholar 

  24. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A. 83, 032323 (2011)

    Article  ADS  Google Scholar 

  25. Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A. 83, 032324 (2011)

    Article  ADS  MATH  Google Scholar 

  26. Vitali, D., Tombesi, P.: Using parity kicks for decoherence control. Phys. Rev. A. 59, 4178 (1999)

    Article  ADS  Google Scholar 

  27. Chen, M.Y., Tu, M.W.Y., Zhang, W.M.: Entangling two superconducting lc coherent modes via a superconducting flux qubit. Phys. Rev. B. 80, 214538 (2009)

    Article  ADS  Google Scholar 

  28. Xu, H.S., Xu, J.B.: Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses. Eur. Phys. Lett. 95, 60003 (2011)

    Article  ADS  Google Scholar 

  29. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  30. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  31. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A. 81, 042105 (2010)

    Article  ADS  Google Scholar 

  32. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Laine, E.M., Piilo, J., Breuer, H.P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)

    Article  ADS  Google Scholar 

  34. Laine1, E.M., Piilo1, J., Breuer, H.P.: Witness for initial system-environment correlations in open-system dynamics. Europhys. Lett. 92, 60010 (2010)

  35. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Phys. 7, 931 (2011)

    Article  ADS  Google Scholar 

  36. Tang, J.S., Li, C.F., Li, Y.L., Zou, X.B., Guo, G.C., Breuer, H.P., Laine, E.M., Piilo, J.: Measuring non-Markovianity of processes with controllable system-environment interaction. Europhys. Lett. 97, 10002 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos.11364006,11447210,11805065), the Natural Science and Technology Foundation of Guizhou Province (Grant Nos.[2017]7343,[2013]2231,[2013]2232), the Natural Science and Technology Foundation of the Education Department of Guizhou Province (Grant No.[2014]242), the Doctor funding of Guizhou Normal University, the Key laboratory of low dimensional condensed matter physics of higher educational institution of Guizhou province(Grant No.[2016]002), College Students’ Scientific Research Training Plan of Guizhou Normal University(Grant No.2017013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Liang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, QL., Sun, J., Xiao, YJ. et al. Non-Classical Correlations and Transfer of Quantum Information in a Superconducting Qubit System with Dynamical Decoupling Pulses. Int J Theor Phys 58, 969–978 (2019). https://doi.org/10.1007/s10773-018-3988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3988-8

Keywords

Navigation