Skip to main content
Log in

Quantum-Classical Correspondence for Adiabatic Shortcut in Two- and Three-Level Atoms

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The methods of quickly achieving the adiabatic effect through a non-adiabatic process has recently drawn widely attention both in quantum and classical regime. In this work ,we study the classical adiabatic shortcut for two- and three-Level atoms by transforming the quantum version into classical one via quantum-classical corresponding theory. The results shows that, the additional couplings between the oscillators can be used to speed up the adiabatic evolution of coupled oscillators. Furthermore, we find that the quantum-classical correspondence theory still holds for the couter-adiabatic driving Hamiltonian for the TQD. This means that, we can obtain the counter-adiabatic driving Hamiltonian for a classical system by averaging over its quantum correspondence in a quantum system. This provides a feasible way to study the classical adiabatic shortcut and the simulation for the quantum adiabatic shortcut in a classical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rezek, Y., Kosloff, R.: Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8(5), 83 (2006)

    Article  ADS  Google Scholar 

  2. Berry, M.V.: Transitionless quantum driving. J. Phys. A 42(36), 365303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X., Torrontegui, E., Muga, J.G.: Lewis-riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)

    Article  ADS  Google Scholar 

  4. Zhang, J., Shim, J.H., Niemeyer, I., Taniguchi, T., Teraji, T., Abe, H., Onoda, S., Yamamoto, T., Ohshima, T., Isoya, J., Suter, D.: Experimental implementation of assisted quantum adiabatic passage in a single spin. Phys. Rev. Lett. 110, 240501 (2013)

    Article  ADS  Google Scholar 

  5. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)

    Article  ADS  Google Scholar 

  6. del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013)

    Article  ADS  Google Scholar 

  7. del Campo, A.: Frictionless quantum quenches in ultracold gases: a quantum-dynamical microscope. Phys. Rev. A 84, 031606 (2011)

    Article  ADS  Google Scholar 

  8. Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Phys. Rev. A 97(2), 023841 (2018)

    Article  ADS  Google Scholar 

  9. Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89(1), 012326 (2014)

    Article  ADS  Google Scholar 

  10. Chen, Y.H., Xia, Y., Wu, Q.C., Huang, B.H., Song, J.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93(5), 052109 (2016)

    Article  ADS  Google Scholar 

  11. Deffner, S., Jarzynski, C., del Campo, A.: Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 4, 021013 (2014)

    Google Scholar 

  12. Jarzynski, C., Deffner, S., Patra, A., Subaşı, Y.: Fast forward to the classical adiabatic invariant. Phys. Rev. E 95, 032122 (2017)

    Article  ADS  Google Scholar 

  13. From classical nonlinear integrable systems to quantum shortcuts to adiabaticity. Phys. Rev. Lett. 117(7), 070401 (2016)

  14. Jarzynski, C.: Generating shortcuts to adiabaticity in quantum and classical dynamics. Phys. Rev. A 88, 040101 (2013)

    Article  ADS  Google Scholar 

  15. Deng, J., Wang, Q.H., Liu, Z., Hä, nggi, P., Gong, J.: Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: Quantum and classical systems. Phys. Rev. E 88, 062122 (2013)

  16. Xiao, G., Gong, J.: Suppression of work fluctuations by optimal control: An approach based on Jarzynski’s equality. Phys. Rev. E 90(5), 052132 (2014)

    Article  ADS  Google Scholar 

  17. Polchinski, J.: Weinberg’s nonlinear quantum mechanics and the einstein-podolsky-rosen paradox. Phys. Rev. Lett. 66, 397–400 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Heslot, A.: Quantum mechanics as a classical theory. Phys. Rev. D 31, 1341–1348 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  19. Weinberg, S.: Testing quantum mechanics. Ann. Phys. 194(2), 336–386 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wu, B., Liu, J., Niu, Q.: Geometric phase for adiabatic evolutions of general quantum states. Phys. Rev. Lett. 94, 140402 (2005)

    Article  ADS  Google Scholar 

  21. Zhang, Q., Wu, B.: General approach to quantum-classical hybrid systems and geometric forces. Phys. Rev. Lett. 97, 190401 (2006)

    Article  ADS  Google Scholar 

  22. Stone, M.: Born-oppenheimer approximation and the origin of wess-zumino terms: Some quantum-mechanical examples. Phys. Rev. D 33, 1191–1194 (1986)

    Article  ADS  Google Scholar 

  23. Gozzi, E., Thacker, W.D.: Classical adiabatic holonomy and its canonical structure. Phys. Rev. D 35, 2398–2406 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  24. Liu, H.D., Wu, S.L., Yi, X.X.: Berry phase and hannay’s angle in a quantum-classical hybrid system. Phys. Rev. A 83, 062101 (2011)

    Article  ADS  Google Scholar 

  25. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.:

  26. Berry, M.V.: Classical adiabatic angles and quantal adiabatic phase. J. Phys. A 18(1), 15 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Torosov, B.T., Della Valle, G., Longhi, S.: Non-Hermitian shortcut to stimulated Raman adiabatic passage. Phys. Rev. A 89(6), 063412 (2014)

    Article  ADS  Google Scholar 

  28. Wu, S., Huang, X., Li, H., Yi, X.: Adiabatic evolution of decoherence-free subspaces and its shortcuts. Phys. Rev. A 96(4), 042104 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC) (Grants No. 11875103, 11775048, and No. 11747155), the Plan for Scientific and Technological Development of Jilin Province (Grant No. 20160520173JH), and the Scientific and Technological Program of Jilin Educational Committee during the Thirteenth Five-year Plan Period (Grant No. JJKH20180009KJ, and No. JJKH20181162KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. D. Liu or H. Y. Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S.Y., Zhang, Y.N., Yang, J. et al. Quantum-Classical Correspondence for Adiabatic Shortcut in Two- and Three-Level Atoms. Int J Theor Phys 58, 836–843 (2019). https://doi.org/10.1007/s10773-018-3979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3979-9

Keywords

Navigation