Skip to main content
Log in

Multimodality Image Fusion Based on Quantum Wavelet Transform and Sum-Modified-Laplacian Rule

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The parallelism and entanglement characteristics of quantum computation greatly improve the efficiency of image processing tasks. With the sharp increase of data size and requirement of real-time processing in image fusion application, rapid implementation using quantum computation will become the inexorable trend. A novel multimodality image fusion algorithm based on quantum wavelet transform (QWT) and proposed quantum version of sum-modified-laplacian (SML) rule is designed in this paper. The source digital images are firstly represented by flexible representation of quantum image (FRQI) model, and then the quantum form images are transformed with QWT to capture salient features of source images. The quantum version of SML rule is proposed to fuse wavelet coefficients, which has higher efficiency and runs faster than its classical counterpart. The final fused image is obtained by using inverse quantum wavelet transform. The simulations and theoretical analysis verify that the proposed algorithm is effective in the fusion of multimodality images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abura'ed, N., Khan, F.S., Bhaskar, H.: Advances in the quantum theoretical approach to image processing applications. ACM Comput. Surv. (CSUR). 49(4), 75 (2017)

    Article  Google Scholar 

  2. Zhou, N., Hu, Y., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations [J]. Quantum Inf. Process. 16(6), 1–23 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Zhou, N., Hua, T., Gong, L., et al.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Song, X., Wang, S., Ellatif, A., Niu, X.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765–1787 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Yang, Y., Tian, J., Lei, H., et al.: Novel quantum image encryption using one-dimensional quantum cellular automata. Inf. Sci. 345, 257–270 (2016)

    Article  Google Scholar 

  6. Li, P., Zhao, Y., Xiao, H., Cao, M.: An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling. Quantum Inf. Process. 16(5), 127 (2017)

    Article  ADS  MATH  Google Scholar 

  7. Yang, Y., Xu, P., Tian, J., Zhang, H.: Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 13(9), 1931–1936 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Naseria, M., Heidari, S., Baghfalaki, M., et al.: A new secure quantum watermarking scheme. Optik. 139, 77–86 (2017)

    Article  ADS  Google Scholar 

  9. Heidari, S., Pourarian, M., et al.: Quantum red-green-blue image steganography. Int. J. Quantum Inf. 15(05), 1750039 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the gray code for colored quantum images. Quantum Inf. Process. 16(10), 242 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  MATH  Google Scholar 

  12. Li, H.S., Zhu, Q., Lan, S., et al.: Image storage, retrieval, compression and segmentation in a quantum system[J]. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhang, Y., Lu, K., Xu, K., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Latorre J.I.: Image compression and entanglement. Computer Science, https://arxiv.org/abs/quant-ph/0510031 (2005). Accessed 23 June 2017

  17. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, S., Yin, H., Fang, L.: Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Trans. Geosci. Remote Sens. 51(9), 4779–4789 (2013)

    Article  ADS  Google Scholar 

  19. Zhu, S., Wang, L., Duan, S.: Memristive pulse coupled neural network with applications in medical image processing. Neurocomputing. 227, 149–157 (2017)

    Article  Google Scholar 

  20. Li, S., Kang, X., Fang, L., Hu, J., Yin, H.: Pixel-level image fusion. Inf. Fusion. 33(C), 100–112 (2017)

    Article  Google Scholar 

  21. Li, X., Qin, S.Y.: Efficient fusion for infrared and visible images based on compressive sensing principle. IET Image Process. 5(2), 141–147 (2011)

    Article  Google Scholar 

  22. Fu, Y., Xu, W., Xie, K.: Adaptive image fusion rule based on quantum theory. Comput. Eng. Appli. 51(21), 191–194 (2015)

    ADS  Google Scholar 

  23. Teng, C.Y., Xu, W.: Image fusion algorithm based on HSI transform and quantum-behaved particle swarm optimization transform. Comput. Eng. Appli. 43(16), 45–46 (2007)

    Google Scholar 

  24. Xi, L., Xie, K.: Multi-focus image fusion based on quantum-inspired image decomposition. Comput. Eng. 41(8), 268–272 (2015)

    Google Scholar 

  25. Kong, W., Lei, Y., Ren, M.: Fusion technique for infrared and visible images based on improved quantum theory model. Neurocomputing. 212(2), 1637–1640 (2016)

    Google Scholar 

  26. Fijany, A., Williams, C.P.: Quantum wavelet transforms: fast algorithms and complete circuits. https://arxiv.org/abs/quant-ph/9809004v1 (1999). Accessed 15 August 2017

  27. Heidari, S., Naseri, M., Gheibi, R., Baghfalaki, M., Pourarian, M.R., Farouk, A.: A new quantum watermarking based on quantum wavelet transforms. Commun. Theor. Phys. 67(6), 732 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Liu, S., Zhao, J., Shi, M.: Medical image fusion based on improved sum-modified-Laplacian. Int. J. Imaging Syst. Technol. 25(3), 206–212 (2015)

    Article  Google Scholar 

  29. Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(1), 12106 (2015)

    MATH  Google Scholar 

Download references

Acknowledgments

The work was funded by the National Natural Science Foundation of China (Grant Nos. 61572089, 61633005, 61802037), the Chongqing Special Postdoctoral Science Foundation (XmT2018032), the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2017jcyjBX0008) and the Fundamental Research Funds for the Central Universities (Grant Nos. 106112017CDJQJ188830, 106112017CDJXY180005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xiao, D. Multimodality Image Fusion Based on Quantum Wavelet Transform and Sum-Modified-Laplacian Rule. Int J Theor Phys 58, 734–744 (2019). https://doi.org/10.1007/s10773-018-3971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3971-4

Keywords

Navigation