Skip to main content
Log in

Robust Multiplexer Design and Analysis Using Quantum Dot Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum Dot Cellular Automata (QCA) is an alternate version of the existing conventional CMOS technology due to its low power intake, faster speed, and smaller size. A multiplexer is a very important logical block in VLSI designs. In this paper, a 2:1 multiplexer (MUX) architecture is proposed, analyzed and compared with related existing architectures. The kink energy of proposed circuit has been calculated and hazard analysis has been completed successfully. All designs in this paper are simulated, checked, and verified using the popular QCADesigner tool. The comparisons of the proposed design with respect to different parameters of the existing MUX(s) along with their corresponding graphical representations prove the robustness of the proposed multiplexer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Chakraborty, B., Dalui, M., Sikdar, B.K.: Design of a reliable cache system for heterogeneous CMPs. J. Circuits Syst. Comput. 27(14), 1850219 (2018). https://doi.org/10.1142/S0218126618502195

    Article  Google Scholar 

  2. Sasamal, T.N., Singh, A.K., Mohan, A.: Design of cost-efficient qca reversible circuits via clock-zone-based crossover. Int. J. Theor. Phys. 57(10), 3127–3140 (2018). https://doi.org/10.1007/s10773-018-3830-3

    Article  Google Scholar 

  3. Sasamal, T.N., Singh, A.K., Ghanekar, U.: Design and implementation of qca d-flip-flops and ram cell using majority gates. J. Circuits Syst. Comput. 1950079 (2018). https://doi.org/10.1142/S0218126619500798

  4. Kandasamy, N., Ahmad, F., Telagam, N.: Shannon logic based novel qca full adder design with energy dissipation analysis. Int. J. Theor. Phys. 57, 1–14 (2018). https://doi.org/10.1007/s10773-018-3883-3

    Article  MATH  Google Scholar 

  5. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015). https://doi.org/10.1016/j.mejo.2015.03.023

    Article  Google Scholar 

  6. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015). https://doi.org/10.1109/TNANO.2015.2409117

    Article  ADS  Google Scholar 

  7. Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015). https://doi.org/10.1016/j.mejo.2014.10.003

    Article  Google Scholar 

  8. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85(4), 541–557 (1997). https://doi.org/10.1109/5.573740

    Article  Google Scholar 

  9. Wilson, M., Kannangara, K., Simmons, M., Raguse, B., Smith, G.: Nanotechnology: basic science and emerging technologies. New York: Chapman and Hall/CRC, 205–206 (2012)

  10. Ahmadpour, S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018). https://doi.org/10.1007/s11227-018-2464-9

    Article  Google Scholar 

  11. Mukhopadhyay, D., Dinda, S., Dutta, P.: Designing and implementation of quantum cellular automata 2:1 multiplexer circuit. Int. J. Comput. Appl. 25(1), 21–24 (2011). https://doi.org/10.5120/2996-4026

    Article  Google Scholar 

  12. Mukhopadhyay, D., Dutta, P.: Quantum cellular automata based novel unit 2:1 multiplexer. Int. J. Comput. Appl. 43(2), 22–25 (2012). https://doi.org/10.5120/6077-8196

    Article  Google Scholar 

  13. Lent, C.S., Tougaw, P., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993). https://doi.org/10.1063/1.108848

    Article  ADS  Google Scholar 

  14. Srivastava, S.: Probalistic modeling of quantum dot cellular automata, Graduate school thesis and dissertations, 2007. http://scholarcommons.usf.edu/etd/2372. Accessed 15 Dec 2017

  15. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: Qcadesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004). https://doi.org/10.1109/TNANO.2003.820815

    Article  ADS  Google Scholar 

  16. Sasamal, T.N., Singh, A.K., Ghanekar, U.: Efficient design of coplanar ripple carry adderin QCA. IET Circuits Devices Syst. 12(5), 594–605 (2018)

    Article  Google Scholar 

  17. Lent, C.S., Tougow, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4(1), 49–57 (1993). https://doi.org/10.1088/0957-4484/4/1/004

    Article  ADS  Google Scholar 

  18. Khan, A., Sur, S., Mukherjee, C., Sukla, A.S., Chakrabarty, R.: Behaviors of QCA inverter due to cell displacement and temperature variation. In proceedings of 2nd international conference on Nanotechnology 325–330 (2015). ISBN: 978- 81–927756–2-3

  19. Chakrabarty, R., Khan, A.: Design of a fault free inverter circuit using minimum number of cells & related kink energy calculation in quantum dot cellular automata. In proceeding of International Conference on Computation and Communication Advancement (IC3A). 369–373 (2013). ISBN 13: 978–1–25-906393-0, ISBN 10: 1–25–906393-3

  20. Chakrabarty, R., De, D., Khan, A., Mukherjee, C., Pramanik, S.: Effect of temperature & kink energy in multilevel digital circuit using quantum dot cellular automata. In proceedings of 5th International Conference on Computers and Devices for Communication (CODEC). 1–4 (2012). https://doi.org/10.1109/CODEC.2012.6509297

  21. Khan, A., Chakrabarty, R.: Design of ring and Johnson counter in a single reconfigurable logic circuit in quantum dot cellular automata. Int. J. Comput. Sci. Technol. 4(1), 363–367 (2013) ISSN: 2229-4333

    Google Scholar 

  22. Khan, A., Chakrabarty, R.: Design of high polarized binary wires using minimum number of cells & related kink energy calculations in quantum dot cellular automata. Int. J. Electron. Commun. Technol. 4(Spl.2), 54–57 (2013) ISSN: 2230–9543

    Google Scholar 

  23. Angizi, S., Moaiyeri, M.H., Farrokhi, S., Navi, K., Bagherzadeh, N.: Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess. Microsyst. 39(7), 512–520 (2015). https://doi.org/10.1016/j.micpro.2015.07.011

    Article  Google Scholar 

  24. Khan, A., Chakrabarty, R.: Novel design of high polarized inverter using minimum number of rotated cells and related kink energy calculation in quantum dot cellular automata. Int. J. Soft Comput. Eng. 3(1), 165–169 (2013)

    Google Scholar 

  25. Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H., Sayedsalehi, S.: Designing efficient qca logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015). https://doi.org/10.1016/j.mejo.2015.03.016

    Article  Google Scholar 

  26. Orlov, A.O., Amlani, I., Kummamuru, R.K., Ramasubramaniam, R., Toth, G., Lent, C.S., Bernstein, G.H., Snider, G.L.: Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata. Appl. Phys. Lett. 77(2), 295–297 (2000). https://doi.org/10.1063/1.126955

    Article  ADS  Google Scholar 

  27. Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano Electron. Phys., 9(1), 01012_1-01012_7 (2017). https://doi.org/10.21272/jnep.9(1).01012, 01012-7

  28. Rashidi, H., Rezai, A., Soltany, S.: High performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016). https://doi.org/10.1007/s10825-016-0832-3

    Article  Google Scholar 

  29. Singh, S., Pandey, S., Wairya, S.: Modular design of 2n:1 quantum dot cellular automata multiplexers and its application, via clock zone based crossover. Int. J. Mod. Educ. Comput. Sci. 8(7), 41–52 (2016). https://doi.org/10.5815/ijmecs.2016.07.05

    Article  Google Scholar 

  30. Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues. 8(6), 55–60 (2011)

    Google Scholar 

  31. Chabi, A.M., Sayedsalehi, S., Angizi, S., Navi, K.: Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Notices. 2014, 1–9 (2014). https://doi.org/10.1155/2014/463967

    Article  Google Scholar 

  32. Ghosh, M., Mukhopadhyay, D., Dutta, P.: A study on 2 dimensional 2 dot 1 electron quantum dot cellular automata based reversible 2:1 mux design: an energy analytical approach. Int. J. Comput. Appl. 38(2–3), 82–95 (2016). https://doi.org/10.1080/1206212x.2016.1218239

    Article  Google Scholar 

  33. Sen, B., Dutta, M., Saran, D., Sikdar, B.K.: An efficient multiplexer in quantum-dot cellular automata. Progress in VLSI design and test. Lect. Notes Comput. Sci. 7373, 350–351 (2012). https://doi.org/10.1007/978-3-642-31494-0_40

    Article  Google Scholar 

  34. Khan, A., Mandal, S., Nag, S., Chakrabarty, R.: Efficient multiplexer design and analysis using quantum dot cellular automata. In proceedings of IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (IEEE-DISCOVER 2016). 163–168 (2016). https://doi.org/10.1109/DISCOVER.2016.7806233

  35. Khan, A., Mandal, S.: Elimination of static hazard in 2:1 multiplexer using quantum dot cellular automata. In proceedings of IEEE Students’ Technology Symposium. 229–234 (2016). https://doi.org/10.1109/TechSym.2016.7872687

  36. Khan, A., Mukherjee, C., Chakraborty, A. K., Chakrabarty, R., De, D.: Elimination of static hazards in asynchronous sequential circuits using quantum dot cellular automata. In Proceedings of 2nd International Conference on Microelectronics, Circuits and Systems. Vol.-II. 140–145 (2015). ISBN: 81-85824-46-0

  37. Khan, A., Chakrabarty, R., De, D.: Static hazard elimination for a logical circuit using quantum dot cellular automata. Microsyst. Technol. 23(9), 4169–4177 (2016). https://doi.org/10.1007/s00542-016-3057-2

    Article  Google Scholar 

  38. Farazkish, R., Sayedsalehi, S., Navi, K.: Novel design for quantum dots cellular automata to obtain fault-tolerant majority gate. J. Nanotechnol. 2012, 1–7 (2012). https://doi.org/10.1155/2012/943406

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshuman Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Mandal, S. Robust Multiplexer Design and Analysis Using Quantum Dot Cellular Automata. Int J Theor Phys 58, 719–733 (2019). https://doi.org/10.1007/s10773-018-3970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3970-5

Keywords

Navigation