Skip to main content
Log in

Geometrical Quantum Discord in the Coupled Cavities System with Tetrahedral Structure

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider the situation that four identical two-level atoms are separately trapped in four single-mode optical cavities, which are placed at the vertices of a tetrahedron and coupled by six fibers. Each atom resonantly interacts with cavity via a one-photon hopping. The evolution of the state vector of the system is given by solving the schrödinger equation when the total excitation number of the system equals one. The geometrical quantum discords between atoms and between cavities are investigated. The effects of cavity-fiber coupling coefficient on the geometrical quantum discords between atoms and between cavities are discussed. The results obtained using the numerical method indicate that the geometrical quantum discords between atoms and between cavities are all weakened with increase of cavity-fiber coupling coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Phys. Rev. Lett. 1895, 70 (1993)

    Google Scholar 

  2. Bennett, C.H., Divincenzo, D.P., Smolin, J.A.: Mixed-state entanglement and quantum error correction. Phys. Rev. A. 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Xing, G.C., Xia, Y.J.: Acta Phys. Sin. 67, 070301 (2018) (in Chinese)

    Google Scholar 

  5. Liu, T.K., Zhang, K.L., Tao, Y., Shan, C.J., et al.: Chin. Phys. B. 25, 070304 (2016)

    Article  Google Scholar 

  6. Tan, L., Zhang, Y.Q., Zhu, Z.H.: Chin. Phys. B. 20, 070303 (2011)

    Article  ADS  Google Scholar 

  7. Zhang, B.: Entanglement between two atoms in two distant cavities connected by an optical fiber beyond strong fiber–cavity coupling. Opt. Commun. 283, 196–199 (2010)

    Article  ADS  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2002)

    Article  ADS  Google Scholar 

  9. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental Quantum Computing without Entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  10. Datta, A., Shaji, A., Caves Carlton, M.: Quantum Discord and the Power of One Qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  11. Allegra, M., Giorda, P., Montorsi, A.: Quantum discord and classical correlations in the bond-charge Hubbard model: Quantum phase transitions, off-diagonal long-range order, and violation of the monogamy property for discord. Phys. Rev. B. 84, 245133 (2011)

    Article  ADS  Google Scholar 

  12. Knill, E., Laflamme, R.: Power of One Bit of Quantum Information. Phys. Rev. Lett. 81, 5672–5675 (1998)

    Article  ADS  Google Scholar 

  13. Dakic, B., Vedral, V., Brukner, C.: Necessary and Sufficient Condition for Nonzero Quantum Discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  14. Ji, Y.H., Liu, Y.M.: Regulation of Entanglement and Geometric Quantum Discord of Hybrid Superconducting Qubits for Circuit QED. Int. J. Theor. Phys. 52, 3220–3228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, H., Fu, Y.Q., Fang, J.X.: Int. J. Theor. Phys. 53, 2967–2979 (2014)

    Article  Google Scholar 

  16. Hagley, E., Maitre, X., Nogues, G., et al.: Phys. Rev. Lett. 79(1), (1997)

  17. Rauschenbeutel, A., Nogues, G., Osnaghi, S., et al.: Science. 288(5473), 2024–2028 (2000)

    Article  ADS  Google Scholar 

  18. Rauschenbeutel, A., Nogues, G., Osnaghi, S., et al.: Phys. Rev. Lett. 83, 5166–5169 (1999)

    Article  ADS  Google Scholar 

  19. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A. 89, 033856 (2014)

    Article  ADS  Google Scholar 

  20. Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A. 89, 012326 (2014)

    Article  ADS  Google Scholar 

  21. Pellizzari, T.: Quantum Networking with Optical Fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)

    Article  ADS  Google Scholar 

  22. Ogden, C.D., Irish, E.K., Kim, M.S.: Dynamics in a coupled-cavity array. Phys. Rev. A. 78, 063805 (2008)

    Article  ADS  Google Scholar 

  23. Peng, P., Li, F.L.: Entangling two atoms in spatially separated cavities through both photon emission and absorption processes. Phys. Rev. A. 75, 062320 (2007)

    Article  ADS  Google Scholar 

  24. Zheng, S.B., Yang, Z.B., Xia, Y.: Generation of two-mode squeezed states for two separated atomic ensembles via coupled cavities. Phys. Rev. A. 81, 015804 (2010)

    Article  ADS  Google Scholar 

  25. Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A. 75, 012324 (2007)

    Article  ADS  Google Scholar 

  26. Serafini, A., Mancini, S., Bose, S.: Distributed Quantum Computation via Optical Fibers. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

  27. Zheng, B., Shen, L.T., Chen, M.F.: Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities. Quantum Inf. Process. 15, 2181–2191 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Wu, H.Z., Yang, Z.B., Zheng, S.B.: Phys. Rev. A. 88, 043816 (2013)

    Article  ADS  Google Scholar 

  29. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A. 91, 012325 (2015)

    Article  ADS  Google Scholar 

  30. Song, C., Su, S.L., Wu, J.L., et al.: Phys. Rev. A. 93, 062321 (2016)

    Article  ADS  Google Scholar 

  31. Zhang, X., Chen, Y.H., Shi, Z.C., Shan, W.J., Song, J., Xia, Y.: Generation of three-qubit Greenberger–Horne–Zeilinger states of superconducting qubits by using dressed states. Quantum Inf. Process. 16, 309 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states’ preparation and transition. Laser Phys. Lett. 11, 115201 (2014)

    Article  ADS  Google Scholar 

  33. Zhong, Z.R., Lin, X., Zhang, B., et al.: European Physical Journal D. 316, 66 (2012)

    Google Scholar 

  34. Huang, X.B., Zhong, Z.R., Chen, Y.H.: Deterministic Generation of a Four-Atom Entangled State in a Two-Dimensional Coupled-Cavity System. Int. J. Theor. Phys. 55, 1192–1200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Fujian Province of China Under Grant No.2015 J01020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Ming Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, DM., Chen, LH. Geometrical Quantum Discord in the Coupled Cavities System with Tetrahedral Structure. Int J Theor Phys 58, 605–614 (2019). https://doi.org/10.1007/s10773-018-3958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3958-1

Keywords

JEL Classification

Navigation