Skip to main content
Log in

A New Quantum Proxy Signature Model Based on a Series of Genuine Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum proxy signature(QPS) is one of the most important topics in quantum signature. In this paper, we propose a new and general model of QPS based on genuine entangled Nj-qubit (3 ≤ Nj ≤ 6,NjN,j = 1,2,3,4.) states. In our model, only the teleportation of multiparty entangled states and quantum one-time pad(QOTP) encryption algorithm have been applied to ensure the security. We hope our results will be helpful to the research of quantum signature in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gasser, M., Goldstein, A., Kaufman, C., Lampson, B.: The digital distributed system security architecture. In: Proceedings of national computer security conference, pp. 305-319 (1989)

  2. Mambo, M, Usuda, K, Okamoto, E.: Proxy signatures: delegation of the power to sign messages. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 79 (9), 1338–1354 (1996)

    Google Scholar 

  3. Kim, S., Park, S., Won, D.: Proxy signatures revisited. In: Proceedings of information and communications security (ICICS97), LNCS 1334, Springer, pp. 223-232 (1997)

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th annual ACM symposium on Theory of computing. ACM, pp. 212–219 (1996)

  5. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G.: . In: Proceedings of the IEEE international conference on computers, systems and signal processing, pp 175–179. IEEE Press, New York (1984)

  7. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Sci. 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  8. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  9. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecomfiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)

    Article  ADS  Google Scholar 

  10. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  11. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  12. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Google Scholar 

  13. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  14. Wei, C., Cai, X., Liu, B., et al.: A generic construction of Quantum-Oblivious-Key-Transfer-Based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, B., Gao, F., Huang, W.: QKD-Based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  16. Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012)

    Article  ADS  Google Scholar 

  17. Wei, C., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)

    Article  Google Scholar 

  18. Zhang, J.L., Guo, F.Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)

    Article  ADS  Google Scholar 

  19. Lin, S., Wen, Q.-Y., Gao, F., et al.: Quantum secure direct communication with Chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  20. Fei, G, Qiao-Yan, W., Fu-Chen, Z.: Teleportation attack on the QSDC protocol with a random basis and order. Chinese Phys. B 17(9), 3189 (2008)

    Article  ADS  Google Scholar 

  21. Gao, F, Qin, S., Wen, QY, et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  22. Lin, S., Guo, G., Xu, Y., Sun, Y., Liu, X.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(06), 2016 (2343)

    Google Scholar 

  23. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  24. Barnum, H., Crpeau, C., Gottesman, D., et al.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE symposium on foundations of computer science. IEEE. pp. 449–458 (2002)

  25. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  26. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature gainst the forgery attack. Quantum Inf. Process. 12(8), 2655–2699 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process 16(3), 70 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gao, F., Qin, S., Guo, F., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(02), 2344 (2011)

    Google Scholar 

  29. Kim, T., Lee, H., Lee, S.: Forgeable quantum messages in arbitrated quantum signature schemes. Quantum Inf. Process 16, 268 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)

    Article  ADS  Google Scholar 

  31. Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phy. B 19(6), 060307 (2010)

    Article  ADS  Google Scholar 

  32. Wang, T.Y., Cai, X.Q.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process. 13(8), 1677–1685 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lin, S., Yu, C.H., Guo, G.D.: Reexamining the security of fair quantum blind signature schemes. Quantum Inf. Process 13(11), 2407–2415 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Xu, R., Huang, L., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)

    Article  ADS  Google Scholar 

  35. Zhang, K., Song, T., Zuo, H., et al.: A secure quantum group signature scheme based on Bell states. Physica Scripta 87(4), 045012 (2013)

    Article  ADS  Google Scholar 

  36. Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process 14(7), 2577–2587 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. China, Ser. G 51(8), 1079–1088 (2008)

    Article  MATH  Google Scholar 

  38. Zhou, J.X., Zhou, Y.J., Niu, X.X., et al.: Quantum proxy signature scheme with public verifiability. Sci. China, Ser. G 54(10), 1828–1832 (2011)

    Article  Google Scholar 

  39. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Proc. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  40. Yang, C.W., Luo, Y.P., Hwang, T.: Forgery attack on one-time proxy signature and the improvement. Quant. Inf. Process 13(9), 2007–2016 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Wang, T.Y., Wei, Z.L.: Analysis of forgery attack on one-time proxy signature and the improvement. Int. J. Theor. Phys. 55(2), 743–745 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Cao, H.J., Huang, J., Yu, Y.F., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53(9), 3095–3100 (2014)

    Article  MATH  Google Scholar 

  43. Cao, H.J., Wang, H.S., Li, P.F.: Quantum proxy multi-signature scheme using genuinely entangled six qubits state. Int. J. Theor. Phys. 52(4), 1188–1193 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, L., Zhang, H.Y., Zhang, K.J., et al.: The security analysis and improvement of some novel quantum proxy signature schemes. Int. J. Theor. Phys. 56 (6), 1983–1994 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-Mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 696–702 (1935)

    Article  MATH  Google Scholar 

  46. Thapliyal, A.V.: Multipartite pure-state entanglement. Phys. Rev. A 59(5), 3336–3342 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  47. Horodecki, R., Horodecki, P., Horodecki, M., et al.: Quantum entanglement. Introduction to quantum information science, pp 865–942. Springer, Berlin (2009)

    MATH  Google Scholar 

  48. Bouwmeester, D., Pan, J.W., Daniell, M., et al.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82(7), 1345 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Li, M.L., Liu, J.J., Hong, W.N.: Quantum information splitting of a single-qubit via genuine four-qubit entangled states. Acta Sin Quantum Opt. 19(2), 141–145 (2013)

    Google Scholar 

  50. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 052306 (2007)

    Article  ADS  Google Scholar 

  51. Borras, A., Plastino, A.R., Batle, J., et al.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40(44), 13407 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101 (20), 208901 (2008)

    Article  ADS  Google Scholar 

  53. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)

    Article  ADS  Google Scholar 

  54. Wang, T., Wen, Q., Gao, F., et al.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373(1), 65–68 (2008)

    Article  ADS  MATH  Google Scholar 

  55. Qin, S., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  56. Wjcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90(15), 157901 (2003)

    Article  ADS  Google Scholar 

  57. Cai, Q.: The Ping-Pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801 (2003)

    Article  ADS  Google Scholar 

  58. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77(1), 014302 (2008)

    Article  ADS  Google Scholar 

  59. Fei, G., Song, L., Qiao-Yan, W., et al.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561 (2008)

    Article  ADS  Google Scholar 

  60. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  61. Gao, F., Qin, S., Wen, Q.Y., et al.: A simple participant attack on the brdler-dusek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  62. Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5), 434–443 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Chen, X.B., Yang, S., Su, Y., et al.: Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state. Physica Scripta 86(5), 055002 (2012)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Heilongjiang Province under Grant No.A2016007, Youth Foundation of Heilongjiang University under Grant No.QL201501, and Hei Long Jiang Postdoctoral Foundation Grant No.LBH-Z17048; Graduates Innovation Scientific Research Foundation of Heilongjiang University under Grant No.YJSCX2017-180HLJU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jia Zhang.

Appendix

Appendix

Table 1 Alice’s measurement outcomes of particles T1, Charlie’s measurement outcomes of particles (M,F1) and Bob’s unitary operations of particles \(S_{1_{u}}\)
Table 2 Alice’s measurement outcomes of particles T2, Charlie’s measurement outcomes of particles (M,F2), and Bob’s measurement outcomes and unitary operations of particles (\(S_{2_{m}}, S_{2_{u}})\)
Table 3 Alice’s measurement outcomes of particle T3, Charlie’s measurement outcomes of particles (M,F3), and Bob’s measurement outcomes and unitary operations of particle \((S_{3_{m}}, S_{3_{u}})\)
Table 4 Alice’s measurement outcomes of particles T4, Charlie’s measurement outcomes of particles (M,F4), and Bob’s measurement outcomes and unitary operations of particles \((S_{4_{m}}, S_{4_{u}})\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HY., Zhang, L. & Zhang, KJ. A New Quantum Proxy Signature Model Based on a Series of Genuine Entangled States. Int J Theor Phys 58, 591–604 (2019). https://doi.org/10.1007/s10773-018-3957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3957-2

Keywords

Navigation