Skip to main content
Log in

Schemes for Bidirectional Quantum Teleportation Via a Hyper-Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose the symmetry bidirectional quantum teleportation scheme by using a bi-photon Bell-class hyper-entangled state as quantum channel. Two distant parties, Alice and Bob can simultaneously teleport the desired one-qubit states each other via Bell-state measurement and appropriate unitary transformation. We also propose the asymmetry bidirectional quantum teleportation scheme by using a bi-photon Bell-class hyper-entangled state as quantum channel. Controlled not gate operation, Bell-state measurement and appropriate unitary transformation are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C. H., Brassard, G.: in Proc. IEEE Int. Conf. Comput. Syst. Signal Process., 175 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A. 68, 042315 (2003)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A. 70, 012311 (2004)

    Article  ADS  Google Scholar 

  5. Hwang, W.Y.: Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  6. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A. 78, 022321 (2008)

    Article  ADS  Google Scholar 

  7. Lo, H.K., Curty, M., Qi, B.: Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  8. Hillery, M., Buˇzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  10. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004)

    Article  ADS  Google Scholar 

  11. Deng, F. G., Zhou, H.Y., Long, G. L.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39, 14089–14099 (2006)

  12. Cleve, R., Gottesman, D., Lo, H.K.: How to Share a Quantum Secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  13. Qin, H.W., Zhu, X.H., Dai, Y.W.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14, 2997–3004 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A. 69, 052319 (2004)

    Article  ADS  Google Scholar 

  16. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71, 044305 (2005)

    Article  ADS  Google Scholar 

  17. Liu, D., Chen, J.L., Jiang, W.: High-Capacity Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  MATH  Google Scholar 

  18. Gu, B., Huang, Y.G., Fang, X., Chen, Y.L.: Robust Quantum Secure Communication with Spatial Quantum States of Single Photons. Int. J. Theor. Phys. 52, 4461–4469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum Secure Direct Communication with Quantum Memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  20. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519 (2017)

  21. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A. 62, 012313 (2000)

    Article  ADS  Google Scholar 

  22. Pati, A. K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

  23. Bennett, C.H., Hayden, P., Leung, D.W., Shor, P.W., Winter, A.: Remote State Preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A. 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. Milburn, G.J., Braunstein, S.L.: Quantum teleportation with squeezed vacuum states. Phys. Rev. A. 60, 937–942 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A. 62, 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kim, Y.H., Kulik, S.P., Shih, Y.H.: Quantum Teleportation of a Polarization State with a Complete Bell State Measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  29. Fattal, D., Diamanti, E., Inoue, K., Yamamoto, Y.: Quantum Teleportation with a Quantum Dot Single Photon Source. Phys. Rev. Lett. 92, 037904 (2004)

    Article  ADS  Google Scholar 

  30. Sherson, J.F., Krauter, H., Olsson, R.K., Julsgaard, B., Hammerer, K., Cirac, I., Polzik, E.S.: Quantum teleportation between light and matter. Nature. 443, 557–560 (2006)

    Article  ADS  Google Scholar 

  31. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum Teleportation Between Distant Matter Qubits. Science. 323, 486–489 (2009)

    Article  ADS  Google Scholar 

  32. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature. 518, 516–519 (2015)

    Article  ADS  Google Scholar 

  33. Kwiat, P.G.: Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of Hyperentangled Photon Pairs. Phys. Rev. Lett. 95, 260501 (2005)

    Article  ADS  Google Scholar 

  35. Chen, J., Fan, J., Eisaman, M.D., Migdall, A.: Generation of high-flux hyperentangled photon pairs using a microstructure-fiber Sagnac interferometer. Phys. Rev. A. 77, 053812 (2008)

    Article  ADS  Google Scholar 

  36. Hu, B.L., Zhan, Y.B.: Generation of hyperentangled states between remote noninteracting atomic ions. Phys. Rev. A. 82, 054301 (2010)

    Article  ADS  Google Scholar 

  37. Shi, J., Yun, S.J., Bai, Y.F., Xu, P., Zhu, S.N.: Compact generation of polarization-frequency hyperentangled photon pairs by using quasi-phase-matched lithium niobate. Opt. Commun. 285, 5549–5553 (2012)

    Article  ADS  Google Scholar 

  38. Kang, D.P., Helt, L.G., Zhukovsky, S.V., Torres, J.P., Sipe, J.E., Helmy, A.S.: Hyperentangled photon sources in semiconductor waveguides. Phys. Rev. A. 89, 023833 (2014)

  39. Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A. 91, 062321 (2015)

    Article  ADS  Google Scholar 

  40. Hegazy, S.F., Obayya, S.S.A., Saleh, B.E.A.: Orthogonal quasi-phase-matched superlattice for generation of hyperentangled photons. Sci. Rep. 7, 4169 (2017)

    Article  ADS  Google Scholar 

  41. He, G.Q., Zhu, C.R., Jiang, Y., Ren, J., Guo, Y., Jing, J.T.: Generation of path-polarization hyperentanglement using quasi-phase-matching in quasi-periodic nonlinear photonic crystal. Sci. Rep. 7, 4954 (2017)

    Article  ADS  Google Scholar 

  42. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)

  43. Graham, T.M., Bernstein, H.J., Junge, M., Wei, T.C., Kwiat, P.G.: Superdense teleportation using hyperentangled photons. Nat. Commun. 6, 7185 (2015)

    Article  Google Scholar 

  44. Wei, T.C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled Bell-state analysis. Phys. Rev. A. 75, 060305(R) (2007)

  45. Sheng, Y. B., Deng, F. G., Long, G. L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010).

  46. Ren, B. C., Wei, H. R., Hua, M., Li, T., Deng, F. G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012),

  47. Wang, T.J.: Lu,Y., Long, G. L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A. 86, 042337 (2012)

  48. Liu, Q., Wang, G.Y., Ai, Q., Zhang, M., Deng, F.G.: Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity. Sci. Rep. 6, 22016 (2016)

    Article  ADS  Google Scholar 

  49. Wang, G. Y., Ai, Q., Ren, B. C., Li, T., Deng, F. G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444–28458 (2016).

  50. Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhan, Y.B.: Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement. Commun. Theor. Phys. 56, 831–836 (2011)

    Article  ADS  MATH  Google Scholar 

  51. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B. 20, 100309 (2011)

  52. Wang, T. J., Li., T., Du, F. F., Deng, F. G.: High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011).

  53. Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Quantum secure direct communication network with hyperentanglement. Chin. Phys. B. 23, 090309 (2014)

  54. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci China Phys. Mech. 60, 120313 (2017)

    Article  Google Scholar 

  55. Hong, W.Q.: Asymmetric Bidirectional Controlled Teleportation by using a Seven-qubit Entangled State. Int. J. Theor. Phys. 55, 384–387 (2016)

    Article  MATH  Google Scholar 

  56. Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Asymmetric Bidirectional Controlled Teleportation by Using Six-qubit Cluster State. Int. J. Theor. Phys. 55, 3008–3016 (2016)

    Article  MATH  Google Scholar 

  57. Yang, Y.Q., Zha, X.W. Yu, Y.: Asymmetric Bidirectional Controlled Teleportation via Seven-qubit Cluster State. Int. J. Theor. Phys. 55, 4197–4204 (2016)

  58. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and Asymmetric Quantum Controlled Teleportation. Int. J. Theor. Phys. 54, 1711–1719 (2015)

    Article  MATH  Google Scholar 

  59. Chen, Y.: Bidirectional Controlled Quantum Teleportation by Using Five-Qubit Entangled State. Int. J. Theor. Phys. 53, 1454–1458 (2014)

    Article  MATH  Google Scholar 

  60. Zhang, D., Zha, X.W., Li, W. Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835–3844 (2015)

  61. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Yan, A.: Bidirectional Controlled Teleportation via Six-Qubit Cluster State. Int. J. Theor. Phys. 52, 3870–3873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single Bell state. Phys. Rev. A. 93, 062305 (2016)

    Article  ADS  Google Scholar 

  64. Sang, M.H.: Bidirectional Quantum Controlled Teleportation by using a Seven-qubit Entangled State. Int. J. Theor. Phys. 55, 380–383 (2016)

    Article  MATH  Google Scholar 

  65. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional Quantum Controlled Teleportation via a Maximally Seven-qubit Entangled State. Int. J. Theor. Phys. 53, 2697–2707 (2014)

    Article  MATH  Google Scholar 

  66. Duan, Y.J., Zha, X.W.: Bidirectional Quantum Controlled Teleportation via a Six-Qubit Entangled State. Int. J. Theor. Phys. 53, 3780–3786 (2014)

    Article  MATH  Google Scholar 

  67. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional Quantum Controlled Teleportation via Five-Qubit Cluster State. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  68. Sang, M.H.: Bidirectional Quantum Teleportation by Using Five-qubit Cluster State. Int. J. Theor. Phys. 55, 1333–1335 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  69. Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B. 24, 050304 (2015)

  70. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905–912 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Choudhury, B.S., Dhara, A.: A Bidirectional Teleportation Protocol for Arbitrary Two-qubit State Under the Supervision of a Third Party. Int. J. Theor. Phys. 55, 2275–2285 (2016)

    Article  MATH  Google Scholar 

  72. Zhao, Z., Zhang, A.N., Chen, Y.A., Zhang, H., Du, J.F., Yang, T., Pan, J.W.: Experimental Demonstration of a Nondestructive Controlled-NOT Quantum Gate for Two Independent Photon Qubits. Phys. Rev. Lett. 94, 030501 (2005)

    Article  ADS  Google Scholar 

  73. Bao, X.H., Chen, T.Y., Zhang, Q., Yang, J., Zhang, H., Yang, T., Pan, J.W.: Optical Nondestructive Controlled-NOT Gate without Using Entangled Photons. Phys. Rev. Lett. 98, 170502 (2007)

    Article  ADS  Google Scholar 

  74. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    Article  ADS  Google Scholar 

  75. Imoto, N.H., Haus, A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A. 32, 2287–2292 (1985)

    Article  ADS  Google Scholar 

  76. Nemoto, K., Munro, W.J.: Nearly Deterministic Linear Optical Controlled-NOT Gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  77. Sheng, Y.B., Deng, D.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A. 77, 042308 (2008)

    Article  ADS  Google Scholar 

  78. Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process. 15, 2033–2052 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Li, T., Wang, G.Y., Deng, F.G., Long, G.L.: Deterministic error correction for nonlocal spatial-polarization hyperentanglement. Sci. Rep. 6, 20677 (2016)

    Article  ADS  Google Scholar 

  80. Gao, C.Y., Wang, G.Y., Zhang, H., Deng, F.G.: Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels. Quantum Inf. Process. 16, 11 (2017)

    Article  ADS  MATH  Google Scholar 

  81. Gao, C.Y., Wang, G.Y., Alzahrani, F., Hobiny, A., Deng, F.G.: Robust spatial-polarization hyperentanglement distribution of two-photon systems against collective noise. J. Phys. B Atomic Mol. Phys. 50, 055502 (2017)

    Article  ADS  Google Scholar 

  82. Jiang, Y.X., Guo, P.L., Gao, C.Y., Wang, H.B., Alzahrani, F., Hobiny, A., Deng, F.G.: Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements. Sci. China-Phys. Mech. Astron. 60 (12), 120312 (2017)

  83. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A. 88, 012302 (2013)

    Article  ADS  Google Scholar 

  84. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express. 22, 6547–6561 (2014)

    Article  ADS  Google Scholar 

  85. Ren, B.C., Wang, H., Alzahrani, F., Hobiny, A., Deng, F.G.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86–94 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11604115, 11547023), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.18KJA140001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Ma, Pc. & Chen, GB. Schemes for Bidirectional Quantum Teleportation Via a Hyper-Entangled State. Int J Theor Phys 58, 372–382 (2019). https://doi.org/10.1007/s10773-018-3938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3938-5

Keywords

Navigation