Skip to main content

Quantum Communication Based on an Algorithm of Determining a Matrix

Abstract

Let us consider the following game; Bob has a N × M matrix (N rows and M columns) but Alice does not know what matrix he has. The goal is of knowing the unknown matrix. How many queries does she need? In the classical case, she needs N × M queries. In the quantum case, she needs just a query. We propose an algorithm for determining the N × M matrix (N rows and M columns). First, we discuss an algorithm for determining an integer string. The algorithm presented here has the following structure. Given the set of real values {a1, a2, a3,…, aN} and a special function g, we determine N values of the function g(a1), g(a2), g(a3),…, g(aN) simultaneously. The speed of determining the string is shown to outperform the best classical case by a factor of N. Next, we consider it as a column of the matrix; C1 = (g(a1), g(a2), g(a3),…, g(aN)) = (a11, a21,..., an1). By using M parallel quantum systems, we have M columns simultaneously, C1, C2,..., CM. The speed of obtaining the M columns (the matrix) is shown to outperform the classical case by a factor of N × M. This implies she needs just a query.

This is a preview of subscription content, access via your institution.

References

  1. Deutsch, D.: Proc. R. Soc. Lond. Ser. A 400, 97 (1985)

    ADS  Article  Google Scholar 

  2. Deutsch, D., Jozsa, R.: Proc. R. Soc. Lond. Ser. A 439, 553 (1992)

    ADS  Article  Google Scholar 

  3. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Proc. R. Soc. London Ser. A 454, 339 (1998)

    ADS  Article  Google Scholar 

  4. Jones, J.A., Mosca, M.: J. Chem. Phys. 109, 1648 (1998)

    ADS  Article  Google Scholar 

  5. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Nature (London) 421, 48 (2003)

    ADS  Article  Google Scholar 

  6. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: J. Opt. B: Quantum Semiclass. Opt. 7, 288–292 (2005)

  7. Kim, Y.-H.: Phys. Rev. A 67, 040301(R) (2003)

    ADS  MathSciNet  Article  Google Scholar 

  8. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Phys. Rev. Lett. 91, 187903 (2003)

    ADS  Article  Google Scholar 

  9. Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: Phys. Rev. Lett. 98, 140501 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  10. Bernstein, E., Vazirani, U.: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93), pp. 11–20 (1993)

  11. Bernstein, E., Vazirani, U.: SIAM J. Comput. 26(5), 1411–1473 (1997)

    MathSciNet  Article  Google Scholar 

  12. Nagata, K., Resconi, G., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: MOJ Ecol. Environ. Sci. 2(1), 00010 (2017)

    Google Scholar 

  13. Simon, D.R.: Foundations of Computer Science. In: Proceedings. 35th Annual Symposium on: 116–123, retrieved 2011-06-06 (1994)

  14. Shor, P.W.: . In: Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, p 124 (1994)

  15. Grover, L.K.: . In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, p 212 (1996)

  16. Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: Phys. Rev. A 64, 042306 (2001)

    ADS  Article  Google Scholar 

  17. Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, Ph., Haelterman, M., Massar, S.: Phys. Rev. Lett. 90, 157902 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  18. Cross, A.W., Smith, G., Smolin, J.A.: Phys. Rev. A 92, 012327 (2015)

    ADS  Article  Google Scholar 

  19. Li, H., Yang, L.: Quantum Inf. Process. 14, 1787 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  20. Adcock, M.R.A., Hoyer, P., Sanders, B.C.: Quantum Inf. Process. 15, 1361 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  21. Fallek, S.D., Herold, C.D., McMahon, B.J., Maller, K.M., Brown, K.R., Amini, J.M.: New J. Phys. 18, 083030 (2016)

    ADS  Article  Google Scholar 

  22. Diep, D.N., Giang, D.H., Van Minh, N.: Int. J. Theor. Phys. 56, 1948 (2017)

    Article  Google Scholar 

  23. Jin, W.: Quantum Inf. Process. 15, 65 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  24. Nagata, K., Resconi, G., Nakamura, T., Batle, J., Abdalla, S., Farouk, A., Geurdes, H.: Asian J. Math. Phys. 1(1), 1–4 (2017)

    Google Scholar 

  25. Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Abdalla, S., Farouk, A., Diep, D.N.: Int. J. Theor. Phys. 57, 973 (2018)

    Article  Google Scholar 

  26. Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Abdalla, S., Farouk, A.: Int. J. Theor. Phys. 57, 1605 (2018)

    Article  Google Scholar 

  27. Nagata, K., Nakamura, T.: J. Sci. Eng. Res. 5(3), 326–328 (2018)

    Google Scholar 

  28. Nagata, K., Nakamura, T.: Open Access Library J. 2, e1798 (2015)

    Google Scholar 

  29. Nagata, K., Nakamura, T.: Int. J. Theor. Phys. 56, 2086 (2017)

    Article  Google Scholar 

  30. Nagata, K., Nakamura, T., Farouk, A.: Int. J. Theor. Phys. 56, 2887 (2017)

    Article  Google Scholar 

  31. Diep, D.N., Giang, D.H.: Int. J. Theor. Phys. 56, 2797 (2017)

    Article  Google Scholar 

  32. Diep, D.N., Giang, D.H., Phu, P.H.: Int. J. Theor. Phys. 57, 841 (2018)

    Article  Google Scholar 

  33. Resconi, G., Nagata, K.: Int. J.. Gen. Eng. Technol. 7(1), 1–20 (2018)

    Google Scholar 

  34. Nagata, K., Nakamura, T., Geurdes, H., Batle, J., Farouk, A., Diep, D.N., Patro, S.K.: Int. J. Theor. Phys. 57, 2546 (2018)

    Article  Google Scholar 

  35. Zheng, C., Wei, S.: Int. J. Theor. Phys. 57, 2203 (2018)

    Article  Google Scholar 

  36. Nagata, K., Nakamura, T., Batle, J., Farouk, A.: Int. J. Theor. Phys. 57, 3098 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagata, K., Nakamura, T. Quantum Communication Based on an Algorithm of Determining a Matrix. Int J Theor Phys 58, 247–254 (2019). https://doi.org/10.1007/s10773-018-3926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3926-9

Keywords

  • Quantum algorithms
  • Quantum communication
  • Quantum computation