A Novel Full Adder/Subtractor in Quantum-Dot Cellular Automata

Abstract

Quantum-dot cellular automata (QCA), one of the alternative CMOS technologies at a nano scale, promises to design digital circuits with extra low-power, extremely dense and high speed structures. In this paper, a new QCA gate with three inputs and two outputs is first introduced; this operates on the basis of cell interactions. Then, low complexity and high-speed QCA full-adder and full-subtractor structures are proposed by applying different formulations, which are based on the introduced gate. Finally, a novel QCA full adder/subtractor is presented with the synergy of the proposed QCA full-adder and full-subtractor structures as well as a proposed optimal single layer 2:1 QCA multiplexer. The proposed designs are simulated using the QCA Designer 2.0.3. The simulation results confirm that the proposed circuits work well. A comparative analysis indicates the superiority of the proposed designs compared to the other related designs. Moreover, the QCAPro power estimator tool is utilized to evaluate the power dissipation of the proposed designs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Lent, C.S., et al.: Quantum cellular automata. Nanotechnology. 4(1), 49–57 (1993)

    ADS  Article  Google Scholar 

  2. 2.

    Toth, G., Lent, C.S.: Quasiadiabatic switching for metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999)

    ADS  Article  Google Scholar 

  3. 3.

    Wilson, M., et al.: Nanotechnology: basic science and emerging technologies. CRC Press, London (2002)

    Google Scholar 

  4. 4.

    Amlani, I., et al.: Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl. Phys. Lett. 77(5), 738–740 (2000)

    ADS  Article  Google Scholar 

  5. 5.

    Zhang, R., et al.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    “The International Technology Roadmap for Semiconductors (ITRS): Semiconductor Associations,” http://itrs.net

  7. 7.

    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    ADS  Article  Google Scholar 

  8. 8.

    Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)

    ADS  Article  Google Scholar 

  9. 9.

    A. Vetteth, et al., Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. Proc. IEEE Emerging Telecommunications Technologies Conference, 2002, pp. 2–4

  10. 10.

    Cho, H., Swartzlander Jr., E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Hänninen, I., Takala, J.: Binary adders on quantum-dot cellular automata. Journal of Signal Processing Systems. 58(1), 87–103 (2010)

    Article  Google Scholar 

  12. 12.

    Navi, K., et al.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)

    Article  Google Scholar 

  13. 13.

    Kianpour, M., et al.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Abedi, D., et al.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Sasamal, T.N., et al.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik-International Journal for Light and Electron Optics. 127(20), 8576–8591 (2017)

    Article  Google Scholar 

  16. 16.

    S.K. Lakshmi, et al., Design of subtractor using nanotechnology based QCA. Proc. IEEE International Conference onCommunication Control and Computing Technologies (ICCCCT), IEEE, 2010, pp. 384–388

  17. 17.

    Dallaki, H., Mehran, M.: Novel Subtractor Design Based on Quantum-Dot Cellular Automata (QCA) Nanotechnology. International Journal of Nanoscience and Nanotechnology. 11(4), 257–262 (2015)

    Google Scholar 

  18. 18.

    Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016)

    Article  Google Scholar 

  19. 19.

    Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2848–2858 (2017)

    MATH  Article  Google Scholar 

  20. 20.

    H. Cho and E. Earl Jr, Serial parallel multiplier design in quantum-dot cellular automata. Proc. 18th IEEE Symposium on Computer Arithmetic, IEEE, 2007, pp. 7–15

  21. 21.

    Basu, S., Bal, A.: Realization of Combinational Multiplier using Quantum Cellular Automata. Int. J. Comput. Appl. 99(19), 1–6 (2014)

    Google Scholar 

  22. 22.

    Faraji, H., Mosleh, M.: A fast wallace-based parallel multiplier in quantum-dot cellular automata. International Journal of Nano Dimension. 9(1), 68–78 (2018)

    Google Scholar 

  23. 23.

    S.-W. Kim and E.E. Swartzlander, “Restoring divider design for quantum-dot cellular automata,” Proc. 11th IEEE Conference on Nanotechnology IEEE, 2011, pp. 1295–1300

  24. 24.

    Sayedsalehi, S., et al.: Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf. Sci. 311, 86–101 (2015)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Mohammadi, M., et al.: Design of non-restoring divider in quantum-dot cellular automata technology. IET Circuits, Devices & Systems. 11(2), 135–141 (2017)

    Article  Google Scholar 

  26. 26.

    Mardiris, V.A., Karafyllidis, I.G.: Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. International Journal of Circuit Theory and Applications. 38(8), 771–785 (2010)

    MATH  Google Scholar 

  27. 27.

    Mukhopadhyay, D., Dutta, P.: Quantum cellular automata based novel unit 2: 1 multiplexer. Int. J. Comput. Appl. 43(2), 22–25 (2012)

    Google Scholar 

  28. 28.

    Hayati, M., Rezaei, A.: An efficient and optimized multiplexer design for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 11(1), 297–302 (2014)

    Article  Google Scholar 

  29. 29.

    Rashidi, H., Rezai, A.: Design of Novel Efficient Multiplexer Architecture for Quantum-dot Cellular Automata. Journal of Nano-and Electronic Physics. 9(1), 1012–1011 (2017)

    Article  Google Scholar 

  30. 30.

    Nejad, M.Y., Mosleh, M.: A Review on QCA Multiplexer Designs. Majlesi Journal of Electrical Engineering. 11(2), 69 (2017)

    Google Scholar 

  31. 31.

    Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2013)

    Article  Google Scholar 

  32. 32.

    K. Walus, et al., RAM design using quantum-dot cellular automata, Proc. NanoTechnology Conference, 2003, pp. 160–163

  33. 33.

    Angizi, S., et al.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)

    Article  Google Scholar 

  34. 34.

    Dehkordi, M.A., et al.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J. 42(5), 701–708 (2011)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Chaharlang, J., Mosleh, M.: An Overview on RAM Memories in QCA Technology. Majlesi Journal of Electrical Engineering. 11(2), 9 (2017)

    Google Scholar 

  36. 36.

    B. Sen, et al., QCA multiplexer based design of reversible ALU. Proc. International Conference on Circuits and Systems (ICCAS),, IEEE, 2012, pp. 168–173

  37. 37.

    Sen, B., et al.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014)

    Article  Google Scholar 

  38. 38.

    Lent, C.S., et al.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)

    ADS  Article  Google Scholar 

  39. 39.

    S.-H. Shin, et al., “Wire-crossing technique on quantum-dot cellular automata,” Proc. 2nd International Conference on Next Generation Computer and Information Technology, 2013, pp. 52–57

  40. 40.

    Kim, K., et al.: The robust QCA adder designs using composable QCA building blocks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 26(1), 176–183 (2007)

    Article  Google Scholar 

  41. 41.

    Qanbari, M., Sabbaghi-Nadooshan, R.: Two Novel quantum-dot cellular automata full adders. Journal of Engineering. 2013, 1–6 (2013)

    Article  Google Scholar 

  42. 42.

    Angizi, S., et al.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. Journal of Low Power Electronics. 10(2), 259–271 (2014)

    Article  Google Scholar 

  43. 43.

    S. Hashemi and K. Navi, A novel robust QCA full-adder. Book A novel robust QCA full-adder, Series A novel robust QCA full-adder 11, ed., Editor ed. eds., Procedia Materials Science, 2015, pp. 376–380

  44. 44.

    Ahmad, F., et al.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Kassa, S.R., Nagaria, R.: A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15(1), 324–334 (2016)

    Article  Google Scholar 

  46. 46.

    Heikalabad, S.R., et al.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 1–12 (2017)

  47. 47.

    Navi, K., et al.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)

    Article  Google Scholar 

  48. 48.

    Hashemi, S., et al.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays. 7(2), 177–189 (2012)

    Google Scholar 

  49. 49.

    Ahmad, F., et al.: Novel Adder Circuits Based On Quantum-Dot Cellular Automata (QCA). Circuits and Systems. 5(06), 142 (2014)

    Article  Google Scholar 

  50. 50.

    Roohi, A., et al.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)

    Article  Google Scholar 

  51. 51.

    Sousan, H.-a.B., et al.: Designing and Implementing a Fast and Robust Full-Adder in Quantum-Dot Cellular Automata (QCA) Technology. Journal of Advances in Computer Research. 6(1), 27–45 (2015)

    Google Scholar 

  52. 52.

    Mohammadi, M., et al.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)

    Article  Google Scholar 

  53. 53.

    Safavi, A., Mosleh, M.: Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate. International Journal of Nanoscience and Nanotechnology. 12(1), 55–69 (2016)

    Google Scholar 

  54. 54.

    Walus, K., et al.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    ADS  Article  Google Scholar 

  55. 55.

    J.I. Reshi and M.T. Banday, Efficient Design of Nano Scale Adder and Subtractor Circuits using Quantum dot Cellular Automata. Book Efficient Design of Nano Scale Adder and Subtractor Circuits using Quantum dot Cellular Automata, Series Efficient Design of Nano Scale Adder and Subtractor Circuits using Quantum dot Cellular Automata, ed., Editor ed. eds., 2016, pp. 89–94

  56. 56.

    S.-W. Kim, Design of parallel multipliers and dividers in quantum-dot cellular automata. UT Electronic Theses and Dissertations, 2011

  57. 57.

    A.N. Bahar, et al., A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alexandria Engineering Journal, 2017, pp. 1–10

  58. 58.

    T. Teodosio and L. Sousa, QCA-LG: A tool for the automatic layout generation of QCA combinational circuits. Proc. Norchip, 2007, IEEE, 2007, pp. 1–5

  59. 59.

    M. Askari, et al., Digital design using quantum-dot cellular automata (a nanotechnology method). Proc. International Conference on Computer and Communication Engineering,, IEEE, 2008, pp. 952–955

  60. 60.

    V. Mardiris, et al., “Design and simulation of a QCA 2 to 1 multiplexer,” Proc. 12th WSEAS International conference on computers, Heraklion, Greece, 2008, pp. 572–576

  61. 61.

    S. Hashemi, et al., “A novel QCA multiplexer design,” Proc. International Symposium onTelecommunications,, IEEE, 2008, pp. 692–696

  62. 62.

    Roohi, A., et al.: A novel architecture for quantum-dot cellular automata multiplexer. International Journal of Computer Science Issues. 8, 1 (2011)

    Google Scholar 

  63. 63.

    Kianpour, M., Sabbaghi-Nadooshan, R.: Optimized Design of Multiplexor by Quantum-dot CellularAutomata. International Journal of Nanoscience and Nanotechnology. 9(1), 15–24 (2013)

    Google Scholar 

  64. 64.

    Chabi, A.M., et al.: Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. International Scholarly Research Notices. 2014, 1–9 (2014)

    Article  Google Scholar 

  65. 65.

    Sen, B., et al.: Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 45, 42–54 (2015)

    Article  Google Scholar 

  66. 66.

    Khosroshahy, M.B., et al.: Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50, 154–163 (2017)

    Article  Google Scholar 

  67. 67.

    S.-S. Ahmadpour and M. Mosleh, A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. The Journal of Supercomputing, 2018, pp. 1–21

  68. 68.

    Sen, B., et al.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)

    Article  Google Scholar 

  69. 69.

    Rashidi, H., et al.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)

    MathSciNet  Article  Google Scholar 

  70. 70.

    Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)

    ADS  Article  Google Scholar 

  71. 71.

    Srivastava, S., et al.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)

    ADS  Article  Google Scholar 

  72. 72.

    S. Srivastava, et al., QCAPro-an error-power estimation tool for QCA circuit design. Book QCAPro-an error-power estimation tool for QCA circuit design, Series QCAPro-an error-power estimation tool for QCA circuit design, ed., Editor ed. eds., IEEE, 2011, pp. 2377–2380

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mosleh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mosleh, M. A Novel Full Adder/Subtractor in Quantum-Dot Cellular Automata. Int J Theor Phys 58, 221–246 (2019). https://doi.org/10.1007/s10773-018-3925-x

Download citation

Keywords

  • Nanotechnology
  • Quantum-dot cellular automata (QCA)
  • Full-adder
  • Full-subtractor