Skip to main content
Log in

Characteristics of the Lumps and Stripe Solitons with Interaction Phenomena in the (2 + 1)-Dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada Equation

International Journal of Theoretical Physics Aims and scope Submit manuscript

Cite this article

Abstract

So far, the interaction between the lump waves and solitons has received much attention from many fields because of its significance to represent new physical phenomena occurring in various branches of physics. In this work, we study the interaction phenomenon between the lump waves and stripe solitons in the (2 + 1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation by making use of the Hirota bilinear method. Adopting the positive quadratic function solutions of the corresponding bilinear equation, a class of lump wave solutions are analytically constructed. What is more, we obtain the lump-single stripe soliton interaction solutions, and show that the one stripe soliton can split into a lump and a stripe soliton. In addition, we provide the interaction solutions between one lump and twin resonance stripe solitons, and present the law of the interaction between a lump and twin resonance stripe solitons by the related three-dimensional plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leblond, H., Manna, M.: Single-oscillation two-dimensional solitons of magnetic polaritons. Phys. Rev. Lett. 99, 064102 (2007)

    Article  ADS  Google Scholar 

  2. Leblond, H., Kremer, D., Mihalache, D.: Ultrashort spatiotemporal optical solitons in quadratic nonlinear media: generation of line and lump solitons from few-cycle input pulses. Phys. Rev. A. 80, 053812 (2009)

    Article  ADS  Google Scholar 

  3. Yang, C., Li, W., Yu, W., Liu, M., Zhang, Y., Ma, G., Lei, M., Liu, W.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dynam. 92, 203–213 (2018)

    Article  MATH  Google Scholar 

  4. Lin, F.H., Chen, S.T., Qu, Q.X., Wang, J.P., Zhou, X.W., Lü, X.: Resonant multiple wave solutions to a new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation: linear superposition principle. Appl. Math. Lett. 78, 112–117 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, W., Yang, C., Liu, M., Yu, W., Zhang, Y., Lei, M.: Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys. Rev. E. 96, 042201 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dynam. 86, 523–534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, W.R.: Breather-to-soliton transitions and nonlinear wave interactions for the nonlinear Schrödinger equation with the sextic operators in optical fibers. Ann. Phys. 529, 1600227 (2017)

    Article  MATH  Google Scholar 

  8. Li, W.Y., Ma, G.L., Yu, W.T., Zhang, Y.J., Liu, M.L., Yang, C.Y., Liu, W.J.: Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics. Chinese Phys. B. 27, 030504 (2018)

    Article  ADS  Google Scholar 

  9. Lü, X., Lin, F.: Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simul. 32, 241–261 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cai, L.Y., Wang, X., Wang, L., Li, M., Liu, Y., Shi, Y.Y.: Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Nonlinear Dynam. 90, 2221–2230 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gao, L.N., Zi, Y.Y., Yin, Y.H., Ma, W.X., Lü, X.: Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dynam. 89, 2233–2240 (2017)

    Article  MathSciNet  Google Scholar 

  12. Mertens, F.G., Quintero, N.R., Cooper, F., Khare, A., Saxena, A.: Nonlinear Dirac equation solitary waves in external fields. Phys. Rev. E. 86, 046602 (2012)

    Article  ADS  Google Scholar 

  13. Liu, M.L., Liu, W.J., Pang, L.H., Teng, H., Fang, S.B., Wei, Z.Y.: Ultrashort pulse generation in model-locked erbium-doped fiber lasers with tungsten disulfide saturable absorber. Opt. Commun. 406, 72–75 (2018)

    Article  ADS  Google Scholar 

  14. Tomizawa, S., Mishima, T.: New cylindrical gravitational soliton waves and gravitational Faraday rotation. Phys. Rev. D. 90, 044036 (2014)

    Article  ADS  Google Scholar 

  15. Lü, X., Ma, W.X.: Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics. Nonlinear Dynam. 85, 1217–1222 (2016)

    Article  MathSciNet  Google Scholar 

  16. Hoefer, M.A., Sommacal, M., Silva, T.J.: Propagation and control of nanoscale magnetic-droplet solitons. Phys. Rev. B. 85, 214433 (2012)

    Article  ADS  Google Scholar 

  17. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature. 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  18. Zhang, J.H., Wang, L., Liu, C.: Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects. Proc. R. Soc. A. 473, 20160681 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, L., Zhu, Y.J., Wang, Z.Q., Xu, T., Qi, F.H., Xue, Y.S.: Asymmetric rogue waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota-Maxwell-Bloch system. J. Phys. Soc. Jpn. 85, 024001 (2016)

    Article  ADS  Google Scholar 

  20. Liu, W.J., Liu, M.L., Han, H.N., Fang, S.B., Teng, H., Lei, M., Wei, Z.Y.: Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passively Q-switched erbium doped fiber lasers [invited]. Photonics. Res. 6, C15–C21 (2018)

    Article  Google Scholar 

  21. Wang, L., Zhu, Y.J., Wang, Z.Z., Qi, F.H., Guo, R.: Higher-order semirational solutions and nonlinear wave interactions for a derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 33, 218–228 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wang, L., Zhu, Y.J., Qi, F.H., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos. 25, 063111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wang, L., Li, X., Qi, F.H., Zhang, L.L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell-Bloch equations. Ann. Phys. 359, 97 (2015)

    Article  MATH  Google Scholar 

  24. Wang, L., Wu, X., Zhang, H.Y.: Superregular breathers and state transitions in a resonant erbium-doped fiber system with higher-order effects. Phys. Lett. A. 382, 2650–2654 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Li, P., Wang, L., Kong, L.Q., Wang, X., Xie, Z.Y.: Nonlinear waves in the modulation instability regime for the ffth-order nonlinear Schrödinger equation. Appl. Math. Lett. 85, 110–117 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, W.J., Liu, M.L., Ou Yang, Y.Y., Hou, H.R., Ma, G.L., Lei, M., Wei, Z.Y.: Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology. 29, 174002 (2018)

    Article  ADS  Google Scholar 

  27. Wang, L., Li, M., Qi, F.H., Xu, T.: Modulational instability, nonautonomous breathers and rogue waves for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas. Phys. Plasmas. 22, 032308 (2015)

    Article  ADS  Google Scholar 

  28. Liu, W.J., Zhu, Y.N., Liu, M.L., Wen, B., Fang, S.B., Teng, H., Lei, M., Liu, L.M., Wei, Z.Y.: Optical properties and applications for MoS2-Sb2Te3-MoS2 heterostructure materials. Photonics. Res. 6, 220–227 (2018)

    Article  Google Scholar 

  29. Sun, W.R., Wang, L.: Matter rogue waves for the three-component Gross-Pitaevskii equations in the spinor Bose-Einstein condensates. Proc. R. Soc. A. 474, 20170276 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Wang, L., Liu, C., Wu, X., Wang, X., Sun, W.R.: Dynamic of superregular breathers in the quintic nonlinear Schrödinger equation. Nonlinear Dynam. 94, 977–989 (2018). https://doi.org/10.1007/s11071-018-4404-x

  31. Wang, L., Jiang, D.Y., Qi, F.H., Shi, Y.Y., Zhao, Y.C.: Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model. Commun. Nonlinear Sci. Numer. Simul. 42, 502 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wang, L., Wang, Z.Q., Sun, W.R., Shi, Y.Y., Li, M., Xu, M.: Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system. Commun. Nonlinear Sci. Numer. Simul. 47, 190 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions. Phys. Rev. E. 88, 013207 (2013)

    Article  ADS  Google Scholar 

  34. He, J., Wang, L., Li, L., Porsezian, K., Erdélyi, R.: Few-cycle optical rogue waves: Complex modified Korteweg-de Vries equation. Phys. Rev. E. 89, 062917 (2014)

    Article  ADS  Google Scholar 

  35. Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Phys. Rev. E. 87, 053202 (2013)

    Article  ADS  Google Scholar 

  36. Sun, W.R., Liu, D.Y., Xie, X.Y.: Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers. Chaos. 27, 043114 (2017)

    Article  ADS  MATH  Google Scholar 

  37. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A. 63, 205–206 (1977)

    Article  ADS  Google Scholar 

  38. Estévez, P.G., Díaz, E., Domínguez-Adame, F., Cerveró, J.M., Diez, E.: Lump solitons in a higher-order nonlinear equation in 2 + 1 dimensions. Phys. Rev. E. 93, 062219 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lou, S.-Y.: On the coherent structures of the Nizhnik-Novikov-Veselov equation. Phys. Lett. A. 277, 94–100 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Ma, W.-X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A. 379, 1975–1978 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Ma, W.X., Qin, Z.Y., Xing, L.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dynam. 84, 923–931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang, L.-L., Chen, Y.: Lump solutions and interaction phenomenon for (2+1) -dimensional Sawada-Kotera equation. Commun. Theor. Phys. 67, 473–478 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Wang, H.: Lump and interaction solutions to the (2 + 1)-dimensional burgers equation. Appl. Math. Lett. 85, 27–34 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Konopelchenko, B.G., Dubrovsky, V.G.: Some new Integrable nonlinear evolution equations in (2+1)-dimensions. Phys. Lett. A. 102, 15–17 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  46. Cao, C.W., Wu, Y.T., Geng, X.G.: On quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. Phys. Lett. A. 256, 59–65 (1999)

    Article  ADS  Google Scholar 

  47. Wang, L., Xian, D.: Homoclinic breather-wave solutions,periodic-wave solutions and kink solitary-wave solutions for CDGKS equations. Chin. J. Quantum Elect. 29, 417–420 (2012)

    Google Scholar 

  48. Meng, X.H.: The periodic solitary wave solutions for the (2+1)-dimensional fifth-order KdV equation. J. Appl. Math. Phys. 2, 639–643 (2014)

    Article  Google Scholar 

  49. Gao, L.-N., Zhao, X.-Y., Zi, Y.-Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Computers and Mathematics with Applications. 72, 1225–1229 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, J.-Y., Ma, W.-X.: Lump solutions to the BKP equation by symbolic computation. Int. J. Mod. Phys. B. 30, 1640028 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Hossen, M.B., Roshida, H.-O., Ali, M.Z.: Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2 +1)-dimensional breaking soliton equation. Phys. Lett. A. 352, 1268–1274 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  52. Yang, H.W., Chen, X., Guo, M., Chen, Y.D.: A new ZK–BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property. Nonlinear Dynam. 91, 2019–2032 (2018)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11604121, 11875126 and 11464012), the Natural Science Fund Project of Hunan Province (Grant No. 2017JJ3255), and the Natural Science Fund Project of Jishou University (Grant No. Jdy17032). We would like to thanks Professor Wen-Xiu Ma and Professor Sen-Yue Lou for useful suggestions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Tang.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, ZH., Chang, X., Tan, JN. et al. Characteristics of the Lumps and Stripe Solitons with Interaction Phenomena in the (2 + 1)-Dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada Equation. Int J Theor Phys 58, 92–102 (2019). https://doi.org/10.1007/s10773-018-3912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3912-2

Keywords

Navigation