Skip to main content
Log in

A High Dimensional Measurement-Device-Independent Quantum Key Distribution Scheme Based on Optical Quantum State Fusion and Fission

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) not only eliminates all detector side channel attacks, but also doubles the secure transmission distance. To improve the performance of MDI-QKD, we propose a high dimensional encoding scheme. By a spatial-temporal mode conversion circuit and quantum state fusion operation, two polarization modes of two photons are converted into the temporal-polarization mode of one photon. Also, by adding a temporal-spatial mode conversion circuit to quantum state fission apparatus, the temporal-polarization mode of one photon can be split into two polarization modes of two photons. By these two processes, each of the two legitimate parties is able to send photons in high dimensional temporal and polarization modes, and the measurement server still performs Bell state measurements (BSMs) after states fission. Hence, the total output rate can be improved. In addition, one of the recovered polarization states keeps stable for channel noise. The numerical simulation results show that by this new scheme, the key generation rate increases by 2∼10 times and transmission distance increases by 6∼60 km for different polarization misalignment errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. BENNET, C.H.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. of IEEE Int. Conf. on Comp., Syst. and Signal Proc., Bangalore, India, Dec. 10–12, 1984 (1984)

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  3. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  4. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595 (2015)

    Article  ADS  Google Scholar 

  5. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  6. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995)

    Article  ADS  Google Scholar 

  7. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  8. Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)

    Article  ADS  Google Scholar 

  9. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008)

    Article  ADS  Google Scholar 

  10. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Information & Computation 7(1), 73 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)

    Article  ADS  Google Scholar 

  12. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686 (2010)

    Article  ADS  Google Scholar 

  13. da Silva, T.F., Xavier, G.B., ao, G.P.T., von der Weid, J.P.: Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems. Opt. Express 20(17), 18911 (2012)

    Article  ADS  Google Scholar 

  14. Yuan, Z.L., Dynes, J.F., Shields, A.J.: Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography. Appl. Phys. Lett. 98(23), 231104 (2011)

    Article  ADS  Google Scholar 

  15. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  16. Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11(4), 045021 (2009)

    Article  ADS  Google Scholar 

  17. Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)

    Article  ADS  Google Scholar 

  18. Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304 (2011)

    Article  ADS  Google Scholar 

  19. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  20. Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54, 2651 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. Inamori: Security of practical time-reversed epr quantum key distribution. Algorithmica 34(4), 340 (2002)

    Article  MathSciNet  Google Scholar 

  22. Hwang, W.Y.: Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  23. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  24. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  25. Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  26. Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J., Mao, Y., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    Article  ADS  Google Scholar 

  27. Vitelli, C., Spagnolo, N., Sciarrino, F., Marrucci, L., Santamato, E.: Joining the quantum state of two photons into one. Nat. Photonics 7(7), 521 (2013)

    Article  ADS  Google Scholar 

  28. Wei, H., Zhu, C., Pei, C.: . In: 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), pp. 97–101 (2017)

  29. Xu, F., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15(11), 113007 (2013)

    Article  ADS  Google Scholar 

  30. U’Ren, A.B., Silberhorn, C., Banaszek, K., Walmsley, I.A.: Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93, 093601 (2004)

    Article  ADS  Google Scholar 

  31. Fasel, S., Alibart, O., Tanzilli, S., Baldi, P., Beveratos, A., Gisin, N., Zbinden, H.: High-quality asynchronous heralded single-photon source at telecom wavelength. New J. Phys. 6(1), 163 (2004)

    Article  ADS  Google Scholar 

  32. Ding, X., He, Y., Duan, Z.C., Gregersen, N., Chen, M.C., Unsleber, S., Maier, S., Schneider, C., Kamp, M., Höfling, S., Lu, C.Y., Pan, J.W.: On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev Lett. 116, 020401 (2016)

    Article  ADS  Google Scholar 

  33. Somaschi, N., Giesz, V., Santis, L.D., Loredo, J.C., Almeida, M.P., Hornecker, G., Portalupi, S.L., Grange, T., Antón, C., Demory, J.: Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340–345 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61372076, 61701375), Shaanxi Key Research and Development Program (Grant No. 2017GY-080), Foundation of Science and Technology on Communication Networks Laboratory (KX172600031) and the 111 Project (No. B08038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhua Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhu, C., Quan, D. et al. A High Dimensional Measurement-Device-Independent Quantum Key Distribution Scheme Based on Optical Quantum State Fusion and Fission. Int J Theor Phys 57, 3902–3911 (2018). https://doi.org/10.1007/s10773-018-3902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3902-4

Keywords

Navigation