Skip to main content

Advertisement

Log in

Shannon Logic Based Novel QCA Full Adder Design with Energy Dissipation Analysis

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot Cellular Automata (QCA) is an emerging nanotechnology to replace VLSI-CMOS digital circuits. Due to its attractive features such as low power consumption, ultra-high speed switching, high device density, several digital arithmetic circuits have been proposed. Adder circuit is the most prominent component used for arithmetic operations. All other arithmetic operation can be successively performed using adder circuits. This paper presents Shannon logic based QCA efficient full adder circuit for arithmetic operations. Shannon logic expression with control variables helps the designer to reduce hardware cost; using with minimum foot prints of the chip size. The mathematical models of the proposed adder are verified with the theoretical values. In addition, the energy dissipation losses of the proposed adder are carried out. The energy dissipation calculation is evaluated under the three separate tunneling energy levels, at temperature T = 2K.The proposed adder dissipates less power. QCAPro tool is used for estimating the energy dissipation. In this paper we proposed novel Shannon based adder for arithmetic calculations. This adder has been verified in different aspects like using Boolean algebra besides it power analysis has been calculated. In addition 1-bit full adder has been enhanced to propose 2-bit and 4-bit adder circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Allan, A., Edenfeld, D., Joyner, W.H., Kahng, A.B., Rodgers, M., Zorian, Y.: 2001 technology roadmap for semiconductors. Computer 35(1), 42–53 (2002)

    Article  Google Scholar 

  2. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  ADS  Google Scholar 

  3. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  ADS  Google Scholar 

  4. Hashemi, S., Navi, K.: A novel robust QCA full-adder. Prog. Mater. Sci. 11, 376–380 (2015)

    Google Scholar 

  5. Niemier, M.T., Kogge, P.M.: Problems in designing with QCAs: Layout = timing. Int. J. Circuit Theory Appl. 29(1), 49–62 (2001)

    Article  Google Scholar 

  6. Zhang, R., Walus, K., Wang, W., Jullien, G.A.: Performance comparison of quantum-dot cellular automata adders. In Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on (pp. 2522-2526). IEEE (2005)

  7. Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders. arXiv:1204.2048 (2012)

  8. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)

    Article  ADS  Google Scholar 

  9. Cho, H., Swartzlander, E.E., Jr.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(2), 721–727 (2009)

    Article  MathSciNet  Google Scholar 

  10. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  11. Nehru, K., Shanmugam, A., Deepa, S., Priyadarshini, R.: A shannon based low power adder cell for neural network training. Int. J. Eng. Technol. 2(3), 258 (2010)

    Article  Google Scholar 

  12. Das, J.C., De, D.: Shannon’s expansion theorem-based multiplexer synthesis using QCA. Nanomater. Energy 5(1), 53–60 (2016)

    Article  Google Scholar 

  13. Perri, S., Corsonello, P., Cocorullo, G.: Area-delay efficient binary adders in QCA. IEEE Transactions on very large scale integration (vlsi) systems 22(1), 1174–1179 (2014)

    Article  Google Scholar 

  14. De, D., Das, J.C.: Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017)

    Article  Google Scholar 

  15. Dysart, T.J., Kogge, P.M.: Probabilistic analysis of a molecular quantum-dot cellular automata adder. In: Defect and fault-tolerance in vlsi systems, 2007. DFT’07. 22nd IEEE International Symposium on (pp. 478-486). IEEE (2007)

  16. Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39(2), 426–433 (2015)

    Article  Google Scholar 

  17. Lombardi, F., Huang, J., Ma, X., Momenzadeh, M., Ottavi, M., Schiano, L., Vankamamidi, V.: Design and test of digital circuits by quantum-dot cellular automata. In: Lombardi, F., Huang, J. (eds.) . UK, Norwood (2008)

  18. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(2), 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  19. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault- tolerant QCA full adder. Microelectron. J. 46, 531–542 (2015)

    Article  Google Scholar 

  20. Ambika, G., Shanthala, G.M., Sharan, P., Talabattula, S.: An optimized design of complex multiply-accumulate (MAC) unit in quantum dot cellular automata (QCA). In: Silicon photonics & high performance computing, pp 95–102. Springer, Singapore (2018)

    Google Scholar 

  21. Wang, W., Walus, K., Jullien, G.A.: Quantum-dot cellular automata adders. In: Nanotechnology, 2003. IEEE-NANO 2003. 2003 3rd IEEE Conference on (vol. 1, pp. 461–464). IEEE (2003)

  22. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  ADS  Google Scholar 

  23. Vetteth, A., Walus, K., Jullien, G.A., Dimitrov, V.: Quantum dot cellular automata carry-look-ahead adder and barrel shifter, Proceed. IEEE Emerging Telecommun. Technol. Dalla TX.2-I-4 (2002)

  24. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro - An error-power estimation tool for QCA circuit design, IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2377–2380 (2011)

  25. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)

    Article  ADS  Google Scholar 

  26. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehru Kandasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandasamy, N., Ahmad, F. & Telagam, N. Shannon Logic Based Novel QCA Full Adder Design with Energy Dissipation Analysis. Int J Theor Phys 57, 3702–3715 (2018). https://doi.org/10.1007/s10773-018-3883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3883-3

Keywords

Navigation