Skip to main content
Log in

The Entropy Inside a Charged Black Hole Under Hawking Radiation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Christodoulou and Rovelli have revealed that black holes have big interiors that grow asymptotically linearly with advanced time. Even if the Hawking radiation is taken into account, such interiors remain large. Based on these findings, we investigate the relation between the entropy contained in the maximum interior volume of a charged black hole and the Bekenstein-Hawking entropy using an improved method. We find that, in the early stages of the radiation, the variation of the entropy is proportional to the variation of the Bekenstein-Hawking entropy. As the radiation progresses, the magnitude of the ratio will be gradually decreasing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marolf, D.: The Black Hole information problem: past, present, and future. Rept.Prog.Phys. 80(9), 092001 (2017). arXiv:1703.02143 [gr-qc]

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  3. Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993). [gr-qc/9305007]

    Article  ADS  MathSciNet  Google Scholar 

  4. Parikh, M.K.: The Volume of black holes. Phys. Rev. D 73, 124021 (2006). [hep-th/0508108]

    Article  ADS  MathSciNet  Google Scholar 

  5. Grumiller, D.: The Volume of 2-D black holes. J. Phys. Conf. Ser. 33, 361 (2006). [gr-qc/0509077]

    Article  ADS  Google Scholar 

  6. DiNunno, B.S., Matzner, R.A.: The Volume Inside a Black Hole. Gen. Rel. Grav. 42, 63 (2010). arXiv:0801.1734 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  7. Ballik, W., Lake, K. arXiv:1005.1116 [gr-qc]

  8. Cvetic, M., Gibbons, G.W., Kubiznak, D., Pope, C.N.: Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume. Phys. Rev. D 84, 024037 (2011). arXiv:1012.2888 [hep-th]

    Article  ADS  Google Scholar 

  9. Ballik, W., Lake, K.: Vector volume and black holes. Phys. Rev. D 88(10), 104038 (2013). arXiv:1310.1935 [gr-qc]

    Article  ADS  Google Scholar 

  10. Christodoulou, M., Rovelli, C.: How big is a black hole? Phys. Rev. D 91(6), 064046 (2015). arXiv:1411.2854 [gr-qc]

    Article  ADS  Google Scholar 

  11. Bengtsson, I., Jakobsson, E.: Black holes: Their large interiors. Mod. Phys. Lett. A 30(21), 1550103 (2015). arXiv:1502.01907 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  12. Ong, Y.C.: Never Judge a Black Hole by Its Area. JCAP 1504(04), 003 (2015). arXiv:1503.01092 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  13. Bhaumik, N., Majhi, B.R.: Interior volume of (1 + D) dimensional Schwarzschild black hole, arXiv:1607.03704 [gr-qc]

  14. Christodoulou, M., De Lorenzo, T.: Volume inside old black holes. Phys. Rev. D 94(10), 104002 (2016). arXiv:1604.07222 [gr-qc]

    Article  ADS  Google Scholar 

  15. Zhang, B.: Entropy in the interior of a black hole and thermodynamics. Phys. Rev. D 92(8), 081501 (2015). arXiv:1510.02182 [gr-qc]

    Article  ADS  Google Scholar 

  16. Ong, Y.C.: The Persistence of the Large Volumes in Black Holes. Gen. Rel. Grav. 47(8), 88 (2015). arXiv:1503.08245 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  17. Massar, S.: The Semiclassical back reaction to black hole evaporation. Phys. Rev. D 52, 5857 (1995). [gr-qc/9411039]

    Article  ADS  Google Scholar 

  18. Chen, P., Ong, Y.C., Yeom, D.h.: Phys. Rept. 603, 1 (2015). https://doi.org/10.1016/j.physrep.2015.10.007. arXiv:1412.8366 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhang, B., You, L.: Phys. Lett. B 765, 226 (2017). https://doi.org/10.1016/j.physletb.2016.12.027. arXiv:1612.07865 [gr-qc]

    Article  ADS  Google Scholar 

  20. Zhang, B.: Phys. Lett. B 773, 644 (2017). https://doi.org/10.1016/j.physletb.2017.09.035. arXiv:1709.07275 [gr-qc]

    Article  ADS  Google Scholar 

  21. Ashtekar, A., Bojowald, M.: Class. Quant. Grav. 22, 3349 (2005). https://doi.org/10.1088/0264-9381/22/16/014 [gr-qc/0504029]

    Article  ADS  MathSciNet  Google Scholar 

  22. Ronald, J., AdlerPisin ChenDavid, I.: Santiago, the generalized uncertainty principle and black hole remnants. Gen. Relativ. Gravit. 33, 2101 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

Shan-Zhong Han is grateful to Jie Jiang for his useful opinions and suggestions.This work is supported by the National Natural Science Foundation of China(Grant No.11235003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Biao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SZ., Yang, JZ., Wang, XY. et al. The Entropy Inside a Charged Black Hole Under Hawking Radiation. Int J Theor Phys 57, 3429–3435 (2018). https://doi.org/10.1007/s10773-018-3856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3856-6

Keywords

Navigation