Skip to main content
Log in

Fermion Anti-fermion Interaction in a Linearized Quantum Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the linearized gravity in the weak field regime and applying the quantum field theory prescription, the study of the gravitational interactions of massless fermions (neutrinos) in tree-level and through the u- and t-channels has been investigated before, but the gravitational interaction through the s-channel has not taken into account yet. In this paper, we calculate the cross section for the gravitational interaction of a fermion-anti-fermion pair to another pair of fermion-anti-fermion in tree level, that is purely an s-channel interaction, and compare it with the electromagnetic analogous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014). arXiv:1403.7377

    Article  MATH  Google Scholar 

  2. Donoghue, J.F.: General relativity as an effective field theory: the leading quantum corrections. Phys. Rev. D 50, 3874 (1994). arXiv:gr-qc/9405057v1

    Article  ADS  Google Scholar 

  3. Donoghue, J.F.: Leading quantum correction to the newtonian potential. Phys. Rev. Lett. 72, 2996 (1994). arXiv:gr-qc/9310024v2

    Article  ADS  Google Scholar 

  4. Gupta, S.N.: Quantization of einstein’s gravitational field: linear approximation. Proc. Phys. Soc. A 65, 161 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gupta, S.N.: Gravitation and electromagnetism. Phys. Rev. 96, 1683 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Barker, B.M., Bhatia, M.S., Gupta, S.N.: Gravitational scattering of light by light. Phys. Rev. 158, 1498 (1967)

    Article  ADS  Google Scholar 

  7. Boccaletti, D., De Sabbata, V., Gualdi, C., Fortini, P.: Photon-Photon Scattering and Photon-Scalar particle scattering via gravitational interaction (One-Graviton exchange) and comparison of the processes between classical (General-Relativistic) theory and the quantum linearized field theory. Nuov. Cim. B 64, 419 (1969)

    Article  ADS  Google Scholar 

  8. Lawrence, J.K.: Gravitational fermion interactions. Gen. Rel. Grav. 2, 215 (1971)

    Article  ADS  Google Scholar 

  9. Olyaei, T., Azizi, A.: Weak gravitational interaction of fermions: quantum viewpoint. arXiv:1804.06939

  10. Peet, F.G.: Cross sections for the scattering of massless particles by graviton exchange. Can. J. Phys. 48, 923 (1970)

    Article  ADS  Google Scholar 

  11. Boccaletti, D., De Sabbata, V., Fortini, P., Gualdi, C.: Gravitational scattering of two- and Four-Component neutrinos. Some remarks in the One-Graviton-Exchange approximation. Nuov. Cim. B 11, 289 (1972)

    Article  ADS  Google Scholar 

  12. Voronov, N.A.: Gravitational compton effect and photoproduction of gravitons by electrons,. Zh. Eksp. Teor Fiz. 64, 1889 (1973)

    Google Scholar 

  13. Skobelev, V.V.: Graviton-Photon interaction. Sov. Phys. J. 18, 62 (1975)

    Article  Google Scholar 

  14. Choi, S.Y., Shim, J.S., Song, H.S.: Factorization and polarization in linearized gravity. Phys. Rev. D 51, 2751 (1995). arXiv:hep-th/9411092

    Article  ADS  Google Scholar 

  15. Holstein, B.R.: Graviton physics. Am. J. Phys. 74, 1002 (2006). arXiv:gr-qc/0607045

    Article  ADS  Google Scholar 

  16. Bjerrum-Bohr, N.E.J., Holstein, B.R., Plante, L., Vanhove, P.: Graviton-Photon scattering. Phys. Rev. D 91(6), 064008 (2015). arXiv:1410.4148

    Article  ADS  Google Scholar 

  17. Ravndal, F., Sundberg, M.: Graviton-Photon conversion on spin 0 and 1/2 particles. Int. J. Mod. Phys. A 17, 3963 (2002)

    Article  ADS  MATH  Google Scholar 

  18. Weinberg, S.: Gravitation and cosmology: principles and applications of the general theory of relativity. Wiley, New York (1972)

    Google Scholar 

  19. Butt, M.S.: Leading quantum gravitational corrections to QED. Phys. Rev. D 74, 125007 (2006). arXiv:gr-qc/0605137

    Article  ADS  Google Scholar 

  20. Halzen, F., Martin, A.D.: Quarks and leptons: an introduction course in modern particle physics. Wiley, New York (1984)

    Google Scholar 

  21. Jamin, M., Lautenbacher, M.E.: TRACER version 1.1: A MATHEMATICA package for γ-Algebra in arbitrary dimensions. Comput. Phys. Commun. 74, 288 (1993)

    Article  Google Scholar 

  22. Peskin, M.E., Schroeder, D.V.: An introduction to quantum field theory. Perseus Books Publishing, New York (1995)

    Google Scholar 

  23. LIGO Scientific Collaboration, Virgo Collaboration: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:gr-qc/1602.03837

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahere Olyaei.

Appendix: Yukawa theory

Appendix: Yukawa theory

Fermions’ interaction by exchanging a scalar particle is studied by Yukawa theory [22]

$$ \mathcal{L}_{\text{sf}}=\frac{1}{2}(\partial_{\mu}\phi)^{2}-\frac{1}{2}M^{2}\phi^{2} + \overline{{\Psi} }(i/\!\!\!\partial-m){\Psi} - g\phi\overline{{\Psi} }{\Psi}, $$
(34)

where Ψ and ϕ respectively stand for massive fermion and scalar fields, and g is the coupling constant. From this Lagrangian, the scalar propagator and the fermion-fermion-scalar vertex are derived as below

For \(f\bar {f}\to f^{\prime }\bar {f}^{\prime }\) interaction with scalar particle as mediator,

the amplitude is

$$ i\mathcal{M}_{\mathrm{s}}=-ig^{2}\frac{[\bar{v}(\mathbf{p}_{2})u(\mathbf{p}_{1})][\bar{u}(\mathbf{p}_{3})v(\mathbf{p}_{4})]}{q^{2}-M^{2}}. $$
(35)

Therefore,

$$\begin{array}{@{}rcl@{}} \overline{|\mathcal{M}_{\mathrm{s}}|^{2}} &=& \frac{g^{4}}{4(q^{2}-M^{2})^{2}}[\bar{v}(\mathbf{p}_{2})u(\mathbf{p}_{1})\bar{u}(\mathbf{p}_{1})v(\mathbf{p}_{2})][\bar{u}(\mathbf{p}_{3})v(\mathbf{p}_{4})\bar{v}(\mathbf{p}_{4})u(\mathbf{p}_{3})]\\ &=&\frac{g^{4}}{4(q^{2}-M^{2})^{2}}\text{Tr}[(/\!\!\!p_{2}-m)(/\!\!\!p_{1}+m)]\text{Tr}[(/\!\!\!p_{3}+m^{\prime})(/\!\!\!p_{4}-m^{\prime})]\\ &=&\frac{4g^{4}}{(q^{2}-M^{2})^{2}}[(p_{1}p_{2})-m^{2}][(p_{3}p_{4})-{m^{\prime}}^{2}], \end{array} $$
(36)

where in its computation we have used (21), (25) and (26). Consequently, by using (20), we achieve the differential cross section

$$ \frac{d\sigma_{\mathrm{s}}}{d{\Omega}}=\frac{g^{4}}{16\pi^{2}E^{2}} \frac{|\mathbf{p}_{i}||\mathbf{p}_{f}|^{3}}{(4E^{2} - M^{2})^{2}}, $$
(37)

which is independent of the scattering angle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, A., Olyaei, T. Fermion Anti-fermion Interaction in a Linearized Quantum Gravity. Int J Theor Phys 57, 2738–2747 (2018). https://doi.org/10.1007/s10773-018-3794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3794-3

Keywords

Navigation