A Third-Party E-payment Protocol Based on Quantum Multi-proxy Blind Signature

  • Xu-Feng Niu
  • Jian-Zhong Zhang
  • Shu-Cui Xie
  • Bu-Qing Chen
Article
  • 7 Downloads

Abstract

A third-party E-payment protocol is presented in this paper. It is based on quantum multi-proxy blind signature. Adopting the techniques of quantum key distribution, one-time pad and quantum multi-proxy blind signature, our third-party E-payment system could protect user’s anonymity as the traditional E-payment systems do, and also have unconditional security which the classical E-payment systems can not provide. Furthermore, compared with the existing quantum E-payment systems, the proposed system could support the E-payment which using the third-party platforms.

Keywords

Third-party E-payment Quantum multi-proxy blind signature Unconditional security 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant No. 2015JM6263, 2016JM6069), and the Fundamental Research Funds for the Central Universities (Grant No. GK201402004).

References

  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Twenty-Eighth ACM Symposium on Theory of Computing, pp. 212–219 (1996)Google Scholar
  3. 3.
    Tian, J.H., Zhang, J.Z., Li., Y.P.: A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled state. Int. J. Theor. Phys. 55(2), 809–816 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Wen, X.J., Nie, Z.: An E-payment system based on quantum blind and group signature. Phys. Scr. 82(6), 5468–5478 (2010)Google Scholar
  5. 5.
    Wen, X.J., Chen, Y.Z., Fang, J.B.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process 12(1), 549–558 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process 12(4), 1651–1657 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Zhang, J.Z., Yang, Y.Y., Xie, S.C.: A third-party E-payment protocol based on quantum group blind signature. Int. J. Theor. Phys. 56(9), 2981–2989 (2017)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Shao, A.X., Zhang, J.Z., Xie, S.C.: An E-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 56(4), 1241–1248 (2017)CrossRefMATHGoogle Scholar
  9. 9.
    Cao, H.J., Zhang, J.F., Liu, J., Li, Z.Y.: A new quantum proxy multi-signature scheme using maximally entangled seven-qubit entangled seven-qubit states. Int. J. Theor. Phys. 55(2), 774–780 (2016)CrossRefMATHGoogle Scholar
  10. 10.
    Lin, F.: A novel quantum blind signature scheme with four-particle Cluster states. Int. J. Theor. Phys. 55(3), 1558–1567 (2016)CrossRefMATHGoogle Scholar
  11. 11.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (1998)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lo, H.K.: A simple proof of the unconditional security in quantum key distribution. J. Phys. A 34(35), 6957–6967 (2012)ADSCrossRefMATHGoogle Scholar
  14. 14.
    Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Paraoanu, G.S., Scutaru, H.: Fidelity for multimode thermal squeezed states. Phys. Rev. A 61(2), 180 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xu-Feng Niu
    • 1
  • Jian-Zhong Zhang
    • 1
  • Shu-Cui Xie
    • 2
  • Bu-Qing Chen
    • 3
  1. 1.College of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina
  3. 3.Teaching and Research Section of PoliticalPLA Information Engineering UniversityLuoyangChina

Personalised recommendations