Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 7, pp 2218–2232 | Cite as

Modulational Instability and Quantum Discrete Breather States of Cold Bosonic Atoms in a Zig-Zag Optical Lattice

  • Xia Chang
  • Jiayu Xie
  • Tianle Wu
  • Bing Tang
Article
  • 49 Downloads

Abstract

A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.

Keywords

Zig-zag optical lattices Cold bosonic atoms Modulational instability Quantum breather states 

Notes

Acknowledgments

Acknowledgments This work was supported by the National Natural Science Foundation of China under Grant No. 11604121, the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 16B210, the Natural Science Fund Project of Hunan Province under Grant No. 2017JJ3255, and the Natural Science Fund Project of Jishou University under Grant No. jdx17036.

References

  1. 1.
    Wang, L., Jiang, D.Y., Qi, F.H., Shi, Y.Y., Zhao, Y.C.: Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model. Commun. Nonlinear Sci. Numer. Simulat. 42, 502–519 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Wang, L., Li, X., Qi, F.H., Zhang, L.L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell-Bloch equations. Ann. Phys. 359, 97–114 (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zhang, J.H., Wang, L., Liu, C.: Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects. Proc. R. Soc. A 473, 20160681 (2017)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Lü, X., Wang, J.P., Lin, F.H., Zhou, X.W.: Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dyn. 91, 1249–1259 (2018)CrossRefGoogle Scholar
  5. 5.
    Lin, F.H., Chen, S.T., Qu, Q.X., Wang, J.P., Zhou, X.W., Lü, X.: Resonant multiple wave solutions to a new (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition principle. Appl. Math. Lett. 78, 112–117 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dyn. 86, 523–534 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Liu, W., Yu, W., Yang, C., Liu, M., Zhang, Y., Lei, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Nonlinear Dyn. 89, 2933–2939 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu, W., Yang, C., Liu, M., Yu, W., Zhang, Y., Lei, M.: Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys. Rev. E 96, 042201 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Liu, W., Liu, M., Lei, M., Fang, S., Wei, Z.: Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser. IEEE J. Selected Topics Quantum Electron. 24, 901005 (2018)Google Scholar
  11. 11.
    Flach, S., Gorbach, A.V.: Discrete breathers – advances in theory and applications. Phys. Rep. 467, 1–116 (2008)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Mcfarland, D.M., Vakakis, A.F.: Propagating discrete breathers in forced one-dimensional granular networks: theory and experiment. Granul. Matter 19, 59 (2017)CrossRefGoogle Scholar
  14. 14.
    Hennig, H., Dorignac, J., Campbell, D.K.: Transfer of Bose-Einstein condensates through discrete breathers in an optical lattice. Phys. Rev. A 82, 3254–3255 (2010)CrossRefGoogle Scholar
  15. 15.
    Palmero, F., English, L.Q., Cuevas, J, Carretero-González, R., Kevrekidis, P.G.: Discrete breathers in a nonlinear electric line: modeling, computation, and experiment. Phys. Rev. E 84, 026605 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Fleurov, V.: Discrete quantum breathers: what do we know about them? Chaos 13, 676 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pinto, R.A., Flach, S.: Quantum breathers in capacitively coupled Josephson junctions: Correlations, number conservation, and entanglement. Phys. Rev. B 77, 024308 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Cazalilla, M.A., Citro, M.A., Giamarchi, T., Orignac, E., Rigol, M.: One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Franzosi, R., Giampaolo, S.M., Illuminati, F.: Quantum localization and bound-state formation in Bose-Einstein condensates. Phys. Rev. A 82, 063620 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., Zoller, P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Winkler, K. et al.: Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Tang, B.: Quantum two-breathers formed by ultracold bosonic atoms in optical lattices. Int. J. Theor. Phys. 55, 2697–2710 (2016)CrossRefzbMATHGoogle Scholar
  23. 23.
    Cheinet, P., Trotzky, S., Feld, M., Schnorrberger, U., Moreno-Cardoner, M., Folling, S., Bloch, I.: Counting atoms using interaction blockade in an optical superlattice. Phys. Rev. Lett. 101, 090404 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Aidelsburger, M., Atala, M., Nascimbène, M., Trotzky, S., Chen, Y.-A., Bloch, I.: Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Jo, G.-B., Guzman, J., Thomas, C.K., Hosur, P., Vishwanath, A., Stamper-Kurn, D.M.: Ultracold atoms in a tunable optical kagome lattice. Phys. Rev. Lett. 108, 045305 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Struck, J., Ölschläger, C., Targat, R.L., Soltan-Panahi, P., Eckardt, A., Lewenstein, M., Windpassinger, P., Sengstock, K.: Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Dhar, A., Mishra, T., Pai, R.V., Mukerjee, S., Das, B.P.: Hard-core bosons in a zig-zag optical superlattice. Phys. Rev. A 88, 053625 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Djoufack, Z.I., Kenfack-Jiotsay, A., Nguenang, J.-P.: Quantum signature of breathers in 1D ultracold bosons in optical lattices involving next-nearest neighbor interactions. Int. J. Mod. Phys. B 31, 1750140 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wright, E., Eilbeck, J.C., Hays, M.H., Miller, P.D., Scott, A.C.: The quantum discrete self-trapping equation in the Hartree approximation. Physica D 69, 18 (1993)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Yoon, B., Negele, J.W.: Time-dependent Hartree approximation for a one-dimensional system of bosons with attractive δ-function interactions. Phys. Rev. A 16, 1451–1457 (1977)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Tang, B., Li, D.-J., Tang, Y.: Quantum breathers in Heisenberg ferromagnetic chains with Dzyaloshinsky-Moriya interaction. Chaos 24, 023113 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kivshar, Y.S.: Localized modes in a chain with nonlinear on-site potential. Phys. Lett. A 173, 172–178 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    Wang, L., Zhu, Y.J., Qi, F.H., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Wang, L., Zhu, Y.J., Wang, Z.Z., Qi, F.H., Guo, R.: Higher-order semirational solutions and nonlinear wave interactions for a derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat 33, 218–228 (2106)CrossRefGoogle Scholar
  35. 35.
    Cai, L.Y., Wang, X., Wang, L., Li, M., Liu, Y., Shi, Y.Y.: Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Nonlinear Dyn. 90, 2221–2230 (2017)CrossRefGoogle Scholar
  36. 36.
    Wang, L., Zhang, L.L., Zhu, Y.J., Qi, F.H., Wang, P., Guo, R., Li, M.: Modulational instability, nonautonomous characteristics and semirational solutions for the coupled nonlinear Schrödinger equations in inhomogeneous fibers. Commun. Nonlinear Sci. Numer. Simulat. 40, 216–237 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Remoissenet, M.: Low-amplitude breather and envelope solitons in quasi-one-dimensional physical models. Phys. Rev. B 33, 2386–2392 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    Remoissenet, M.: Waves Called Solitons. Concepts and Experiments, 2nd edn., pp. 238–239, SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics, Mechanical and Electrical EngineeringJishou UniversityJishouChina

Personalised recommendations