Skip to main content
Log in

Duality Quantum Simulation of the Yang-Baxter Equation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Yang, C.N.: S matrix for the one-dimensional N-body problem with repulsive or attractive delta-function interaction. Phys. Rev. 168, 1920–1923 (1968)

    Article  ADS  Google Scholar 

  3. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, New York (1982)

    MATH  Google Scholar 

  4. Baxter, R.J.: Partition function of the Eight-Vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Jimbo, M. (ed.): Yang-Baxter Equation in Integrable Systems. World Scientific, Singapore (1990)

  6. Frenkel, I.B., Jing, N.: Vertex representations of quantum affine algebras. Proc. Natl. Acad. Sci. USA 85, 9373–9377 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Gerstenhaber, M., Schack, S.D.: Bialgebra cohomology, deformations, and quantum groups. Proc. Natl. Acad. Sci. USA 87, 478–481 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Yang, C.N., Ge, M.L.: Braid Group, Knot Theory and Statistical Mechanics, 2nd edn., pp. 1–176. World Scientific, Singapore (1994)

    Book  Google Scholar 

  9. Billey, S.C.: Kostant polynomials and the cohomology ring for G/B. Proc. Natl. Acad. Sci. USA 94, 29–32 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Sun, C.P.: The differential realization of new solutions for Yang–Baxter equation. Chin. Sci. Bull. 37, 379 (1992)

    MATH  Google Scholar 

  11. Gui, P.: Another solution of Yang–Baxter equation on set and ‘metahomomorphisms on groups’. Chin. Sci. Bull. 42, 1852–1855 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, H.X.: Cpcycle deformations, braided monoidal categories and quasitriangularity. Chin. Sci. Bull. 44, 510–513 (1999)

    Article  MATH  Google Scholar 

  13. Hou, D.P., Bai, C.M.: J-dendriform algebras. Front. Math. Chin. 7, 29–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dubail, J., Jacobsen, J.L., Saleur, H.: Exact solution of the anisotropic special transition in the O(n) model in two dimensions. Phys. Rev. Lett. 103, 145701 (2009)

    Article  ADS  Google Scholar 

  15. Mattis, D.C.: The Many-Body Problem, pp. 419–472. World Scientific, Singapore (1993)

    Book  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 1–607. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Li, S.S., Long, G.L., Bai, F.S., Feng, S.L., Zheng, H.Z.: Quantum computing. Proc. Natl. Acad. Sci. USA 98, 11847–11848 (2001)

    Article  ADS  Google Scholar 

  18. Dye, H.A.: Unitary solutions to the Yang–Baxter equation in dimension four. Quant. Info. Proc. 2, 117–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kauffman, L.H., Lomonaco, S.J. Jr.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)

    Article  ADS  Google Scholar 

  20. Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal quantum gate, Yang–Baxterization and Hamiltonian. Int. J. Quantum. Inform. 3, 669–678 (2005)

    Article  MATH  Google Scholar 

  21. Franko, J.M., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15, 413–427 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rowell, E.C., Zhang, Y., Wu, Y.S., Ge, M.L.: Extraspecial two-groups, generalized Yang–Baxter equations and braiding quantum gates. Quantum Inf. Comput. 10, 685–702 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, Y., Ge, M.L.: GHZ States, almost-complex structure and Yang–Baxter equation. Quantum Inf. Process. 6, 363–379 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, J.L., Xue, K., Ge, M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A 76, 042324 (2007)

    Article  ADS  Google Scholar 

  25. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Freedman, M.H., Kitaev, A.Y., Wang, Z.H.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587–603 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Ardonne, E., Schoutens, K.: Wavefunctions for topological quantum registers. Ann. Phys. 322, 201–235 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Feiguin, A., Trebst, S., Ludwig, A.W.W., Troyer, M., Kitaev, A., Wang, Z., Freedman, M.H.: Interacting anyons in topological quantum liquids: the golden chain. Phys. Rev. Lett. 98, 160409 (2007)

    Article  ADS  Google Scholar 

  29. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Hikami, K.: Skein theory and topological quantum registers: braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states. Ann. Phys. 323, 1729–1769 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Bose, S., Korepin, V.: Quantum gates between flying qubits via spin-independent scattering (2011). arXiv:1106.2329v1

  32. Yao, X.C., Wang, T.X., Chen, H.Z., Gao, W.B., Fowler, A.G., Raussendorf, R., Chen, Z.B., Liu, N.L., Lu, C.Y., Deng, Y.J., Chen, Y.A., Pan, J.W.: Experimental demonstration of topological error correction. Nature 482, 489–494 (2012)

    Article  ADS  Google Scholar 

  33. Hu, S.W., Xue, K., Ge, M.L.: Optical simulation of the Yang-Baxter equation. Phys. Rev. A 78, 022319 (2008)

    Article  ADS  Google Scholar 

  34. Zheng, C., Li, J.L., Song, S.Y., Long, G.L.: Direct experimental simulation of the Yang–Baxter equation. J. Opt. Soc. Am. B 30(6), 1688–1693 (2013)

    Article  ADS  Google Scholar 

  35. Anvari Vind, F., Foerster, A., Oliveira, I.S., et al.: Experimental realization of the Yang–Baxter equation via NMR interferometry. Sci. Rep. 6, 20789 (2016)

    Article  Google Scholar 

  36. Batchelor, M.T., Foerster, A.: Yang–Baxter integrable models in experiments: from condensed matter to ultracold atoms. J. Phys. A: Math. Theor. 49, 173001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  38. Greiner, M., Mandel, O., Bloch, I., et al.: Quantum phase transition from a superuid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  39. Leibfried, D., DeMarco, B., Wineland, D.J., et al.: Trapped-ion quantum simulator: experimental application to nonlinear interferometers. Phys. Rev. Lett. 89, 247901 (2002)

    Article  ADS  Google Scholar 

  40. Friedenauer, A., Schmitz, H., Schatz, T., et al.: Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757–761 (2008)

    Article  Google Scholar 

  41. Kim, K., Duan, L.M., Monroe, C., et al.: Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010)

    Article  ADS  Google Scholar 

  42. Lanyon, B.P., Aspuru-Guzik, A., White, A.G.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)

    Article  Google Scholar 

  43. Gerritsma, R., Blatt, R., Roos, C., et al.: Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010)

    Article  ADS  Google Scholar 

  44. Aspuru-Guzik, A., Walther, P.: Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012)

    Article  Google Scholar 

  45. Feng, G.R., Lu, Y., Long, G.L., et al.: Experimental simulation of quantum tunneling in small systems. Sci. Rep. 3, 2232 (2013)

    Article  Google Scholar 

  46. Neill, C., Roushan, P., Martinis, J.M., et al.: Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys. (2016). https://doi.org/10.1038/nphys383

  47. Li, H., Gao, X., Xin, T., et al.: Experimental study of Forrelation in nuclear spins. Sci. Bull. 62(7), 497–502 (2017)

    Article  Google Scholar 

  48. Pearson, J., Feng, G.R., et al.: Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system. Sci. China Phys. Mech. Astron. 59 (12), 120312 (2016)

    Article  Google Scholar 

  49. Jin, F.Z., Chen, H.W., Rong, X., et al.: Experimental simulation of the Unruh effect on an NMR quantum simulator. Sci. China Phys. Mech. Astron. 59(3), 630302 (2016)

    Article  Google Scholar 

  50. Li, H., Liu, Y., Long, G.L.: Experimental realization of single-shot nonadiabatic holonomic gates in nuclear spins. Sci. China Phys. Mech. Astron. 60(8), 080311 (2017)

    Article  ADS  Google Scholar 

  51. Kong, X.Q., Li, Q., Wu, C.H., et al.: Multiple-server flexible blind quantum computation in networks. Int. J. Theor. Phys. 55, 3001 (2016)

    Article  MATH  Google Scholar 

  52. Cai, J.M.: Quantum simulation meets quantum biology. Sci. China Phys. Mech. Astron. 60, 030331 (2017)

    Article  ADS  Google Scholar 

  53. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)

    Article  Google Scholar 

  54. Nagata, K., Nakamura, T., Farouk, A.: Quantum cryptography based on the Deutsch-Jozsa algorithm. Int. J. Theor. Phys. 56, 2086 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Diep, D.N., Giang, D.H., Minh, N.V.: Quantum Gauss-Jordan elimination and simulation of accounting principles on quantum computers. Int. J. Theor. Phys. 56, 1948 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zheng, C., Hao, L., Long, G.L.: Observation of a fast evolution in a parity-time-symmetric system. Phil. Trans. R. Soc. A 371, 20120053 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  57. Tang, J.C., Li, C.F., Guo, G.C., et al.: Experimental investigation of the no-signalling principle in parity–time symmetric theory using an open quantum system. Nat. Photonics.https://doi.org/10.1038/nphoton.2016.144 https://doi.org/10.1038/nphoton.2016.144 (2016)

  58. Long, G.L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45(5), 825–844 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  59. Temperley, H.N.V., Lieb, E.H.: Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc. R. Soc. London Ser. A 322, 251–280 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Long, G.L., Liu, Y.: Duality computing in quantum computers. Commun. Theor. Phys. 50(6), 1303–1306 (2008)

    Article  ADS  Google Scholar 

  61. Long, G.L., Liu, Y., Wang, C.: Allowable generalized quantum gates. Commun. Theor. Phys. 51(1), 65–67 (2009)

    Article  ADS  MATH  Google Scholar 

  62. Long, G.L.: Duality quantum computing and duality quantum information processing. Int. J. Theor. Phys. 50, 1305–1318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Gudder, S.: Mathematical theory of duality quantum computers. Quantum Inf. Process. 6(1), 37–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Long, G.L.: Mathematical theory of the duality computer in the density matrix formalism. Quantum Inf. Process. 6(1), 49–54 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Gudder, S.: Duality quantum computers and quantum operations. Int. J. Theor. Phys. 47(1), 268–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wang, Y.Q., Du, H.-K., Dou, Y.N.: Note on generalized quantum gates and quantum operations. Int. J. Theor. Phys. 47(9), 2268–2278 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Long, G.L., Liu, Y.: Duality quantum computing. Front. Comput. Sci. 2(2), 167–178 (2008)

    Article  Google Scholar 

  68. Long, G.L., Liu, Y.: General principle of quantum interference and the duality quantum computer. Rep. Prog. Phys. 28, 410–431 (2008)

    Google Scholar 

  69. Cui, J.X., Zhou, T., Long, G.L.: Density matrix formalism of duality quantum computer and the solution of zero-wave-function paradox. Quantum Inf. Process. 11 (2), 317–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Cao, H.X. et al.: Mathematical theory of generalized duality quantum computers acting on vector-states. Int. J. Theor. Phys. 52(6), 1751–1767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Cao, H.X. et al.: Mathematical theory of generalized duality quantum computers acting on vector-states. Int. J. Theor. Phys. 52(6), 1751–1767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zou, X.F., Qiu, D.W., Wu, L.H., Li, L.J., Li, L.Z.: On mathematical theory of the duality computers. Quantum Inf. Process. 8(1), 37–50 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  73. Wei, S.J., Zou, Z.R., Ruan, D., Long, G.L.: Realization of the algorithm for system of linear equations in duality quantum computing. In: Proceeding 2017 IEEE 85th Vehicular Technology Conference (VTC2017-Spring) (2017)

  74. Wei, S.J., Long, G.L.: Duality quantum computer and the efficient quantum simulations. Quantum Inf. Process. 15(3), 1189–1212 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Wei, S.J., Ruan, D., Long, G.L.: Duality quantum algorithm efficiently simulates open quantum systems. Sci. Rep. 6, 30727 (2016)

    Article  ADS  Google Scholar 

  76. Long, G.L. et al.: Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment. Sci. China Phys. Mech. Astron. 61(3), 030311 (2018)

    Article  ADS  Google Scholar 

  77. Qiang, X., Zhou, X., Aungskunsiri, K., et al.: Quantum processing by remote quantum control[J]. Quantum Sci. Technol. 2(4), 045002 (2017)

    Article  ADS  Google Scholar 

  78. Marshman, R.J., Lund, A.P., Rohde, P.P., Ralph, T.C.: Passive quantum error correction of linear optics networks through error averaging (2017). arXiv:http://arxiv.org/abs/1709.02157

  79. Neeley, M., Ansmann, M., Martinis, J.M., et al.: Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009)

    Article  ADS  Google Scholar 

  80. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 221–225. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  81. Cao, Y., Peng, S.G., Zheng, C., Long, G.L.: Quantum fourier transform and phase estimation in qudit system. Commun. Theor. Phys. 55, 790–794 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Grant No. 11705004, Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics No. KF201710, Organization Department of Beijing Municipal Committee Talents Project No. 2017000020124G050, NCUT ‘The Belt and Road Initiatives’ and Research Startup Fund, and the Fundamental Research Funds of Beijing Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Wei, S. Duality Quantum Simulation of the Yang-Baxter Equation. Int J Theor Phys 57, 2203–2212 (2018). https://doi.org/10.1007/s10773-018-3745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3745-z

Keywords

Navigation