Skip to main content
Log in

Entropy of Vaidya Black Hole on Apparent Horizon with Minimal Length Revisited

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By considering the generalized uncertainty principle, the degrees of freedom near the apparent horizon of Vaidya black hole are calculated with the thin film model. The result shows that a cut-off can be introduced naturally rather than taking by hand. Furthermore, if the minimal length is chosen to be a specific value, the statistical entropy will satisfy the conventional area law at the horizon, which might reveal some deep things of the minimal length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, W.B., Zhao, Z.: The entropy of thermal nonequilibrium Schwarzschild-de Sitter spacetime. Acta Math. Sci. 23(2), 169–174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Zurek, W.H., Thorne, K.S.: Statistical mechanical origin of the entropy of a rotating charged black hole. Phys. Rev. Lett. 54, 2171–2175 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  5. Frolov, V.P., Fursaev, D.V.: Statistical mechanics on axially-symmetric space-times with the Killing horizon and entropy of rotating black holes in induced gravity. Phys. Rev. D 61(2), 483–484 (1999)

    MathSciNet  Google Scholar 

  6. Callan, C.G., Wilczek, F.: On geometric entropy. Phys. Lett. B 333(1–2), 55–61 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  7. ’t Hooft, G.: On the quantum structure of a black hole. Nucl. Phys. B 256, 727 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  8. Won, T.K.: Entropy of 2 + 1 dimensional de Sitter space in terms of brick wall method. Phys. Rev. D 59, 047503 (1999)

    Article  Google Scholar 

  9. Liu, W.B.: Reissner-Nordstrom black hole entropy inside and outside the brick wall. Chin. Phys. Lett. 20(3), 440 (2003)

    Article  ADS  Google Scholar 

  10. Ghosh, K.: A few comments on brick-wall model and the entropy of a scalar field in Schwarzschild black hole background. Nucl. Phys. B 814, 212–216 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Wontae, K., Edwin, J.S., Myungseok, Y.: Entropy of the FRW cosmology based on the brick wall method. Phys. Lett. B 669, 359–363 (2008)

    Article  MathSciNet  Google Scholar 

  12. Masakatsu, K., Kamal, K.N., Kazuyasu, S.: Solution-independent analysis of black hole entropy in brick wall model. Class. Quant. Grav. 22, 3923 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Latham, T., Gershon, T.: A method to measure cos(2β) using time-dependent Dalitz plot analysis of B 0D C P π + π . J. Phys. G 36, 025006 (2009)

    Article  ADS  Google Scholar 

  14. Lee, C.O.: The thermodynamic properties of warped Taub-NUT AdS black string. arXiv:1402.3972v2 [gr-qc] (2017)

  15. Sun, X.F., Liu, W.B.: Improved black hole entropy calculation without cutoff. Mod. Phys. Lett. A 19, 677 (2004)

    Article  ADS  MATH  Google Scholar 

  16. Kim, W., Kim, Y.W., Park, Y.J.: Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle. Phys. Rev. D 74(10), 711–717 (2006)

    Article  MathSciNet  Google Scholar 

  17. Park, M.: The generalized uncertainty principle in (A)dS space and the modification of Hawking temperature from the minimal length. Phys. Lett. B 659, 698–702 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: The Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem. Phys. Rev. D 65, 125028 (2002)

    Article  ADS  Google Scholar 

  19. Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65(12), 397–398 (2001)

    MathSciNet  Google Scholar 

  20. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52(2), 1108–1118 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  21. Tawfik, A.N., Dahab, E.A.E.: Corrections to entropy and thermodynamics of charged black hole using generalized uncertainty principle. Int. J. Mod. Phys. A 30 (09), 1550030 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Li, X.: Black hole entropy without brick walls. Phys. Lett. B 540(1), 9–13 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A 10 (02), 9500008 (1994)

    Google Scholar 

  24. Tang, H.: Entropy of Schwarzschild-de Sitter black hole with generalized uncertainty principle revisited. Commun. Theor. Phys. 68, 64–66 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ali, A.F.: Minimal length in quantum gravity, equivalence principle and holographic entropy bound. Class. Quant. Grav. 28(6), 65013–65022 (2011)

    Article  MathSciNet  Google Scholar 

  26. Zeynali, K., Darabi, F., Motavalli, H.: Modified generalized uncertainty principal and black hole thermodynamics. Mod. Phys. Lett. A 27, 391250227 (2012)

    Article  ADS  MATH  Google Scholar 

  27. Gangopadhyay, S., Dutta, A., Saha, A.: Generalized uncertainty principle and black hole thermodynamics. Gen. Rel. Grav. 46(2), 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Hammad, F.: f(R)-modified gravity, Wald entropy, and the generalized uncertainty principle. Phys. Rev. D 92, 044004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Song, T.P., Hou, C.X., Shi, W.L.: Entropy of Vaidya-Bonner black hole. Acta Phys. Sin. 51, 1398–1401 (2002)

    Google Scholar 

  30. Zhou, S.W., Liu, W.B.: Apparent horzion and event horizon of a vaidya black hole. Mod. Phys. Lett. 24(26), 2099–2106 (2009)

    Article  ADS  MATH  Google Scholar 

  31. Yoon, M., Ha, J., Kim, W.: Entropy of Reissner-Nordstrom black holes with minimal length revisited. Phys. Rev. D 76, 047501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Li, X., Zhao, Z.: Entropy of Vaidya-deSitter Spacetime. Chin. Phys. Lett. 18, 463–465 (2001)

    Article  ADS  Google Scholar 

  33. Yang, X.J., Zhao, Z.: The thin film model without cutoff and the black hole entropy of Dirac field. Acta Phys. Sin. 60(6), 060401 (2011)

    Google Scholar 

Download references

Acknowledgments

Supported by National Natural Science Foundation of China under Grant Nos. 11675139, 11605137, 11435006, 11405130 and the Double First-Class University Construction Project of Northwest University. Bin Wu is also supported by the China Postdoctoral Science Foundation (No.2017M623219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Wu, B., Sun, Cy. et al. Entropy of Vaidya Black Hole on Apparent Horizon with Minimal Length Revisited. Int J Theor Phys 57, 2145–2150 (2018). https://doi.org/10.1007/s10773-018-3739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3739-x

Keywords

Navigation