Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 7, pp 2124–2132 | Cite as

Truth Values of Quantum Phenomena

  • Arkady Bolotin
Article

Abstract

In the paper, the idea of describing not-yet-verified properties of quantum objects with logical many-valuedness is scrutinized. As it is argued, to promote such an idea, the following two foundational problems of many-valued quantum logic must be decided: the problem of choosing a proper system of many-valued logic and the problem of the emergence of bivalence from logical many-valuedness. Difficulties accompanying solutions of these problems are discussed.

Keywords

Quantum mechanics Many-valued logics Bivalence Truth-functionality Truth values Quantum logic 

Notes

Acknowledgment

The author would like to thank the anonymous referee for the inspiring feedback and the insights.

References

  1. 1.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. I. Phys. Rev. 85, 166–179 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. II. Phys. Rev. 85, 180–193 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bohm, D., Bub, J.: A proposed solution to the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38(3), 453–469 (1966)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Rainer, D.: Advanced Quantum Mechanics: Materials and Photons. Springer-Verlag, New York (2012)zbMATHGoogle Scholar
  5. 5.
    Jung, K.: Is the de Broglie-Bohm interpretation of quantum mechanics really plausible?. J. Phys.: Conf. Ser. 442(012060), 1–9 (2013)Google Scholar
  6. 6.
    Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press Ltd., Baldock. Hertfordshire, England (2001)Google Scholar
  7. 7.
    Miller, D., Thornton, M.: Multiple valued logic: Concepts and representations. Morgan & Claypool Publishers, San Rafael CA (2008)Google Scholar
  8. 8.
    Pykacz, J., Fra̧ckiewicz, P.: The Problem of Conjunction and Disjunction in Quantum Logics. Int. J. Theor. Phys. (2017).  https://doi.org/10.1007/s10773-017-3402-y
  9. 9.
    Pykacz, J. : Fuzzy quantum logics and infinite-valued Łukasiewicz logic. Int. J. Theor Phys. 33, 1403–1416 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Pykacz, J.: Quantum logic as partial infinite-valued Łukasiewicz logic. Int. J. Theor. Phys. 34(8), 1697–1710 (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Pykacz, J.: Łukasiewicz operations in fuzzy set and many-valued representations of quantum logics. Found. Phys. 30, 1503–1524 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pykacz, J.: Unification of two approaches to quantum logic: Every Birkhoff - von Neumann quantum logic is a partial infinite-valued Łukasiewicz logic. Stud. Logica 95, 5–20 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pykacz, J.: Towards many-valued/fuzzy interpretation of quantum mechanics. Int. J. Gen. Syst. 40, 11–21 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pykacz, J.: Can Many-Valued logic help to comprehend quantum phenomena. Int. J. Theor. Phys. 54, 4367–4375 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Beltrametti, E., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading MA (1981)zbMATHGoogle Scholar
  16. 16.
    Pitowsky, I.: Quantum Probability – Quantum Logic Lecture Notes in Physics, vol. 321. Springer-Verlag, Berlin (1989)zbMATHGoogle Scholar
  17. 17.
    Caves, C., Fuchs, C., Schack, R.: Subjective probability and quantum certainty. arXiv:quant-ph/0608190 (2007)
  18. 18.
    Morgan, C., Leblanc, H.: Probability theory, intuitionism, semantics, and the dutch book argument. Notre Dame Journal of Formal Logic 24(3), 289–304 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Savage, L.: Foundations of Statistics, 2nd ed. Dover, New York (1972)zbMATHGoogle Scholar
  20. 20.
    de Finetti, B.: Theory of Probability. Wiley, New York (1990)zbMATHGoogle Scholar
  21. 21.
    Bernardo, J., Smith, A.: Bayesian Theory. Wiley, Chichester (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Losada, M., Fortin, S., Holik, F.: Classical limit and quantum logic. Int. J. Theor. Phys. 57(2), 465–475 (2017).  https://doi.org/10.1007/s10773-017-3579-0 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Landsman, N.: Between classical and quantum” arXiv:quant-ph/0506082 (2008)
  24. 24.
    Kochen, S.: A reconstruction of quantum mechanics. Found. Phys. 45(5), 557–590 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sorkin, R.: An exercise in “anhomomorphic logic” arXiv:quant-ph/0703276 (2007)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ben-Gurion University of the NegevBeershebaIsrael

Personalised recommendations