Quantum Private Query Based on Bell State and Single Photons

  • Xiang Gao
  • Yan Chang
  • Shi-Bin Zhang
  • Fan Yang
  • Yan Zhang
Article
  • 39 Downloads

Abstract

Quantum private query (QPQ) can protect both user’s and database holder’s privacy. In this paper, we propose a novel quantum private query protocol based on Bell state and single photons. As far as we know, no one has ever proposed the QPQ based on Bell state. By using the decoherence-free (DF) states, our protocol can resist the collective noise. Besides that, our protocol is a one-way quantum protocol, which can resist the Trojan horse attack and reduce the communication complexity. Our protocol can not only guarantee the participants’ privacy but also stand against an external eavesdropper.

Keywords

Quantum private query Bell state Single photons 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers and editors who have helped to improve the paper.

Project supported by: NSFC (Grant Nos. 61572086, U1636106 61402058), Sichuan innovation team of quantum security communication (No.17TD0009), Application Foundation Project of Sichuan Province of China (2017JY0168), the Fund for Middle and Young Academic Leaders of CUIT (Grant No. J201511), Sichuan academic and technical leaders training funding support projects (Grant No.2016120080102643) and National Undergraduate Training Program for Innovation and Entrepreneurship under Grant Nos. 201710621027.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (1984)Google Scholar
  2. 2.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al: Rev. Mod. Phys. 81, 130 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Lo, H.K., Ma, X.F., Chen, K.: Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Lo, H.-K., Marcos, C., Bing, Q.: Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Sasaki, M., Fujiwara, M., Ishizuka, H., et al: Opt. Express 19, 10387 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Wang, C., Deng, F.G., Long, G.L.: Opt. Commun. 253, 15 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Lin, S., Wen, Q.Y., Gao, F.: Phys. Rev. A 78, 064304 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, T.Y., Wen, Q.Y., Chen, X.B.: Opt. Commun. 281, 6130 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, Z.J.: Phys. Lett. A 342, 60 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Yang, Y.G., Wen, Q.Y.: J. Phys. A-Math. Theor. 42, 055305 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Tseng, H.Y., Lin, J., Hwang, T.: Quantum Inf. Process. 11, 373 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gentner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: J. Comput. Syst. Sci. 60, 592 (2000)CrossRefGoogle Scholar
  13. 13.
    Giovannetti, V., Lloyd, S., Maccone, L.: Phys. Rev. Lett. 100, 230502 (2008)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Olejnik, L.: Phys. Rev. A 84, 022313 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Jakobi, M., Simon, C., Gisin, N., et al: Phys. Rev. A 83, 022301 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Gao, F., Liu, B., Wen, Q.Y., et al: Opt. Express 20, 17411 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, J.L., Guo, F.Z., Gao, F., et al: Phys. Rev. A 88, 022334 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Yang, Y.G., Zhang, M.O., Yang, R.: Quantum Inf. Process 14, 1017 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Yang, Y.G., Sun, S.J., Xu, P., et al.: Quantum Inf. Process 13, 805 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yang, Y.G., Sun, S.J., Tian, J., et al: OPTIK 125, 5538 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Wei, C.Y., Gao, F., Wen, Q.Y., et al.: Sci. Rep.-UK 4, 7537 (2014)CrossRefGoogle Scholar
  22. 22.
    Liu, B., Gao, F., Huang, W., et al.: Sci. China-Phys. Mech. Astron. 58, 100301 (2015)CrossRefGoogle Scholar
  23. 23.
    Wei, C.Y., Wang, T.Y., Gao, F.: Phys. Rev. A 93, 042318 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Wei, C.Y., Cai, X.Q., Liu, B., et al.: IEEE Trans. Comput. 67, 2 (2018)CrossRefGoogle Scholar
  25. 25.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al: Sci. Chin. Ser. G-Phys. Mech. Astron. 39, 161 (2009)Google Scholar
  26. 26.
    Gao, F., Qin, S.J., Wen, Q.Y., et al.: Opt. Commun. 283, 192 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, C., Deng, F.G., Long, G.L.: Opt. Commun. 253, 15 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Lo, H. K.: Phys. Rev. A 56, 1154 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Gao, F., Liu, B., Huang, W., et al: IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)Google Scholar
  31. 31.
    Yang, Y.G., Liu, Z.C., Li, J., et al: Phys. Lett. A 380, 4033 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information Security EngineeringChengdu University of Information TechnologyChengduChina
  2. 2.School of ComputerBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations