International Journal of Theoretical Physics

, Volume 57, Issue 7, pp 1961–1973 | Cite as

Arbitrated Quantum Signature with Hamiltonian Algorithm Based on Blind Quantum Computation

  • Ronghua Shi
  • Wanting Ding
  • Jinjing Shi


A novel arbitrated quantum signature (AQS) scheme is proposed motivated by the Hamiltonian algorithm (HA) and blind quantum computation (BQC). The generation and verification of signature algorithm is designed based on HA, which enables the scheme to rely less on computational complexity. It is unnecessary to recover original messages when verifying signatures since the blind quantum computation is applied, which can improve the simplicity and operability of our scheme. It is proved that the scheme can be deployed securely, and the extended AQS has some extensive applications in E-payment system, E-government, E-business, etc.


Arbitrated quantum signature Hamiltonian algorithm Blind quantum computation Quantum teleportation 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61401519, 61272495), the Natural Science Foundation of Hunan Province (2017JJ3415).


  1. 1.
    Yang, Y.G., Lei, H., Liu, Z.C., et al.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 70 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Li, H.R., Luo, M.X., Peng, D.Y., et al.: An arbitrated quantum signature scheme without entanglement. Commun. Theor. Phys. 68(3), 317 (2017)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Fan, L., Zhang, K.J., Qin, S.J., et al.: A novel quantum blind signature scheme with four-particle GHZ states. Int. J. Theor. Phys. 55(2), 1028–1035 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on quantum blind signature based on two-state vector formalism. Quantum Inf. Process., 1–9 (2013)Google Scholar
  6. 6.
    Shi, J.J., Shi, R.H., Guo, Y., et al.: Batch proxy quantum blind signature scheme. Sci China Inform Sci 56(5), 1–9 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, W., Shi, J., Shi, R., Guo, Y.: Blind quantum signature with controlled Four-Particle cluster states. Int. J. Theor. Phys. 56(8), 2579–2587 (2017)CrossRefzbMATHGoogle Scholar
  8. 8.
    Shi, J., Shi, R., Tang, Y., Lee, M.H.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum fourier transform. Quantum Inf. Process. 10(5), 653–670 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79(5), 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes, vol. 82 (042325)Google Scholar
  12. 12.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 062330 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    da Silva, M.P., Landon-Cardinal, O., Poulin, D.: Practical characterization of quantum devices without tomography. Phys. Rev. Lett. 107(21), 210404 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Shabani, A., Mohseni, M., Lloyd, S., Kosut, R.L., Rabitz, H.: Phys. Rev. A 84, 012107 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Chaum, D.: Blind signatures for untraceable payments. Advances in cryptology, pp 199–203. Springer, US (1983)zbMATHGoogle Scholar
  17. 17.
    Lal, S., Awasthi, A.K.: Proxy blind signature scheme. J. Inf. Sci. Eng. Cryptology ePrint Archive, Report, 72 (2003)Google Scholar
  18. 18.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. Public Key Cryptography-PKC, 277–290 (2004)Google Scholar
  19. 19.
    Wen, X., Niu, X., Ji, L., et al.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Tian-Yin, W., Qiao-Yan, W.: Fair quantum blind signatures. Chinese Phys. B 19(6), 060307 (2010)CrossRefGoogle Scholar
  21. 21.
    Qi, S., Zheng, H., Qiaoyan, W., et al.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408–4410 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Cai, X.Q., Niu, H.F.: Partially blind signatures based on quantum cryptography. Int. J. Mod. Phys. C 26(30), 1250163 (2012)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Wiebe, N. et al.: Hamiltonian learning and certification using quantum resources. Phys. Rev. Lett. 112(19), 190501 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Hentschel, A., Sanders, B.C.: Efficient algorithm for optimizing adaptive quantum metrology processes. Phys. Rev. Lett. 107, 233601 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Sergeevich, A., Chandran, A., Combes, J., Bartlett, S.D., Wiseman, H.M.: Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis[J]. Phys. Rev. A 84(5), 052315 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Ferrie, C., Granade, C., Cory, D.: How to best sample a periodic probability distribution, or on the accuracy of hamiltonian finding strategies. Quantum Inf. Process pp. 1–13, ISSN 1570-0755 (2012)Google Scholar
  27. 27.
    Sergeevich, A., Bartlett, S.D.: Optimizing qubit hamiltonian parameter estimation algorithms using PSO. arXiv:1206.3830. CEC, 10–15 June 2012 (2012)
  28. 28.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on foundations of Computer Science, 2009. FOCS’09, IEEE, pp 517–526 (2009)Google Scholar
  29. 29.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. A 86(22), 5188 (2001)ADSGoogle Scholar
  30. 30.
    Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4 (2), 294–307 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Bell, J.S.: On the einstein podolsky rosen paradox (1964)Google Scholar
  33. 33.
    Gong, L.H., Song, H.C., He, C.S., et al.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scripta. 89 (3), 035101 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Zeng, G., Guo, G.: Quantum authentication protocol 1 (2000)Google Scholar
  37. 37.
    Zhou, N., Li, J., Yu, Z., Gong, L., Farouk, A.: New quantum dialogue protocol based on continuous variable two-mode squeezed vacuum states. Quantum Inf. Process. 16(1), UNSP4 (2017)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science & EngineeringCentral South UniversityChangshaChina

Personalised recommendations