International Journal of Theoretical Physics

, Volume 57, Issue 7, pp 1948–1960 | Cite as

Design of Low-Complexity and High-Speed Coplanar Four-Bit Ripple Carry Adder in QCA Technology

  • Moslem Balali
  • Abdalhossein Rezai


Quantum-dot Cellular Automata (QCA) technology is a suitable technology to replace CMOS technology due to low-power consumption, high-speed and high-density devices. Full adder has an important role in the digital circuit design. This paper presents and evaluates a novel single-layer four-bit QCA Ripple Carry Adder (RCA) circuit. The developed four-bit QCA RCA circuit is based on novel QCA full adder circuit. The developed circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the developed circuits have advantages in comparison with existing single-layer and multilayer circuits in terms of cell count, area occupation and circuit latency.


Quantum-dot cellular automata One-bit full adder design Four-bit ripple carry adder Single-layer design 


  1. 1.
    Lent, C.S., Tougaw, P.D.: A device circuit for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRefGoogle Scholar
  2. 2.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano- Electron. Phys. 9(1), 1–7 (2017)CrossRefGoogle Scholar
  4. 4.
    Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architect for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)CrossRefGoogle Scholar
  5. 5.
    Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2990–3004 (2017)CrossRefzbMATHGoogle Scholar
  6. 6.
    Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)CrossRefGoogle Scholar
  7. 7.
    Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik-Int. J. Light Electron Opt. 127(20), 8576–8591 (2016)CrossRefGoogle Scholar
  8. 8.
    Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7 (8), 1546–1553 (2010)CrossRefGoogle Scholar
  9. 9.
    Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)CrossRefGoogle Scholar
  10. 10.
    Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hashemi, S., Navi, K.: A novel robust QCA full-adder. Proced. Mater. Sci. 11, 376–380 (2015)CrossRefGoogle Scholar
  12. 12.
    Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10(2), 259–271 (2014)CrossRefGoogle Scholar
  13. 13.
    Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: A novel design of 5-input majority gate in quantum-dot cellular automata technology. In: 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp 13–16. IEEE (2017)Google Scholar
  14. 14.
    Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, W., Walus, K., Jullien, G.A.: Quantum-dot cellular automata adders. In: 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on Nanotechnology, vol. 1, pp 461–464. IEEE (2003)Google Scholar
  17. 17.
    Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Navi, K., Chabi, A.M., Sayedsalehi, S.: A novel seven input majority gate in quantum-dot cellular automata. IJCSI International Journal of Computer Science Issues 9(1), 84–89 (2012)Google Scholar
  19. 19.
    Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)CrossRefGoogle Scholar
  20. 20.
    Chan, S.T.Y., Chau, C.F., bin Ghazali, A.: Design of a 4-bit ripple adder using Quantum-dot Cellular Automata (QCA). In: 2013 IEEE International Conference on Circuits and Systems (ICCAS), pp 33–38. IEEE (2013)Google Scholar
  21. 21.
    Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7(2), 177–189 (2012)Google Scholar
  22. 22.
    Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nano computing. Electron. Lett. 52(6), 464–466 (2016)CrossRefGoogle Scholar
  23. 23.
    Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys. 7, 1389–1395 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Rashidi, H., Rezai, A.: High-performance full adder architecture in quantum-dot cellular automata. J. Eng. 2017(7), 394–402 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication May/2018

Authors and Affiliations

  1. 1.ACECR Institute of Higher Education, Isfahan BranchIsfahanIran

Personalised recommendations