Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 6, pp 1903–1927 | Cite as

Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload

  • Zhiguo Qu
  • Siyi Chen
  • Sai Ji
  • Songya Ma
  • Xiaojun Wang
Article

Abstract

An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.

Keywords

Quantum steganography Anti-noise Payload Security Imperceptibility 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61373131, 61303039, 61232016, 61501247), Natural Science Foundation of Jiangsu Province (Grant No. BK20171458), Sichuan Youth Science and Technique Foundation (No.2017JQ0048), NUIST Research Foundation for Talented Scholars (2015r014), PAPD and CICAEET funds.

References

  1. 1.
    Chen, X.Y., Chen, S., Wu, Y.L.: Coverless information hiding method based on the Chinese character encoding. Journal of Internet Technology 18(2), 313–320 (2017)Google Scholar
  2. 2.
    Xia, Z.H., Wang, X.H., Sun, X.M., Wang, B.W.: Steganalysis of least significant bit matching using multi-order differences. Security and Communication Networks 7(8), 1283–1291 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhou, Z.L., Yang, C.N., Chen, B.J., Sun, X.M., Liu, Q., Jonathan Wu, Q.M.: Effective and efficient image copy detection with resistance to arbitrary rotation. IEICE Trans. Inf. Syst. E99-D(6), 1531–1540 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Xia, Z.H., Wang, X.H., Zhang, L.G., Qin, Z., Sun, X.M., Ren, K.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 11(11), 2594–2608 (2016)CrossRefGoogle Scholar
  5. 5.
    Qu, Z.G., Keeney, J., Robitzsch, S., Zaman, F., Wang, X.J.: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks. China Communications 13(7), 108–116 (2016)CrossRefGoogle Scholar
  6. 6.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings IEEE international conference on computers, systems, and signal processing, Bangalore, pp 175–179. IEEE, New York (1984)Google Scholar
  7. 7.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yin, X.R., Ma, W.P., Liu, W.Y.: Efficient bidirectional quantum secure communication with two-photon entanglement. Quantum Inf.Process. 12(9), 3093–3102 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Shi, G.F., Xi, X.Q., Tian, X.L., et al.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282, 2460 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Bennett, C.H., Brassard, G., Crupeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknownquantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cao, T.B., An, N.B.: Deterministic controlled bidirectional remote state preparation. Adv.Nat. Sci. Nanosci. Nanotechnol. 5, 015003 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Sharama, V., Shukla, C., Banerjee, S.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf.Process. 14(9), 3441–3464 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, D., Zha, X.W., Duan, Y.J.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440–446 (2016)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zhang, D., Zha, X.W., Duan, Y.J.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quntum teleportation. Phys. Rev. A 92(1), 81 (2015)CrossRefGoogle Scholar
  17. 17.
    Liu, L., Tang, G.M., Sun, Y.F.: Quantum steganography for Multi-party covert communication. Int. J. Theor. Phys. 55(1), 191–201 (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Xu, S.J., Chen, X.B., Wang, L.H.: An improved quantum information hiding protocol based on entanglement swapping of χ-type quantum state. Communication In Theoretical Physics 65(6), 705–710 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Natori, S.: Quantum Computation and information. From Theory to Experiment 102, 235–240 (2006)MathSciNetGoogle Scholar
  20. 20.
    Qu, Z.G., Chen, X.Bo., Zhou, X.J.: Novel quantum steganography with large payload. Opt. Commun. 283, 4782–4786 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Qu, Z.G.: Quantum steganography with large payload based on entanglement swapping of χ-type entangled states. Opt. Commun. 284, 2075–2082 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Ye, T.Y., Jiang, L.Z.: Large payload quantum steganography based on cavity quantum electrodynamics. Chin. Phys. 22, 040305 (2013)CrossRefGoogle Scholar
  23. 23.
    Liao, X., Wen, Q.Y., Song, T.T.: Quantum steganography with high efficiency with noisy depolarizing channels. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E96A, 2039–2044 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Wei, Z.H., Chen, X.Bo., Niu, X.X.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54, 2505–2515 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wei, Z.H., Chen, X.Bo., Niu, X.X.: A novel quantum steganography protocol based on probability measurements. International Journal of Quantum Information 11, 1350068 (2013)CrossRefzbMATHGoogle Scholar
  26. 26.
    Taskashi, M.: Multi-party quantum steganography. Int. J. Theor. Phys. 56(2), 576–583 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xu, S.J., Chen, X.Bo., Wang, L.H.: A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states. Chin. Phys. B 24 (5), 050306 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Qu, Z.G., Cheng, Z.W., Luo, M.X.: A robust quantum watermark algorithm based on quantum Log-polar images. Int. J. Theor. Phys. 56(11), 3460–3476 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Qu, Z.G., Chen, S.Y., Ji, S.: A novel quantum video steganography protocol with large payload based on MCQI quantum video. Int. J. Theor. Phys. 56(11), 3543–3561 (2017)CrossRefzbMATHGoogle Scholar
  30. 30.
    Zhou, N., Hu, Y., Gong, L.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum. Inf. Process. 16(6), 5290–5338 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Miyake, S., Nakamael, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quant. Inf. Process. 15, 1849–1864 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Engineering Center of Network MonitoringNanjing University of Information Science and TechnologyNanjingChina
  2. 2.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina
  3. 3.School of Mathematics and StaticsHenan UniversityKaifengChina
  4. 4.School of Electronic EngineeringDublin City UniversityDublinIreland

Personalised recommendations