Skip to main content
Log in

An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In early 2009, Xiu et al. (Opt. Commun. 282(2) 333–337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656–2658 2009) pointed out two security loopholes in Xiu et al.’s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344–347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282(2), 333–337 (2009)

    Article  ADS  Google Scholar 

  2. Qin, S.J., Wen, Q.Y., Meng, L.M., Zhu, F.C.: Comment on controlled DSQC using five-qubit entangled states and two-step security test. Opt. Commun. 282 (13), 2656–2658 (2009)

    Article  ADS  Google Scholar 

  3. Zhang, L.L., Zhan, Y.B., Zhang, Q.Y.: Controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 48(10), 2971–2976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F., Ren, Y.P., Liu, H.W.: A revised controlled deterministic secure quantum communication with five-photon entangled state. Opt. Commun. 283(2), 344–347 (2010)

    Article  ADS  Google Scholar 

  5. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Cryptanalysis and improvement of the controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 53(5), 1495–1501 (2014)

    Article  MATH  Google Scholar 

  6. Nanvakenari, M., Houshmand, M.: An efficient controlled quantum secure direct communication and authentication by using four particle cluster states. Int. J. Quant. Info. 15, 1750002 (2017)

    Article  MATH  Google Scholar 

  7. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60, 157–166 (1999)

    Article  ADS  Google Scholar 

  8. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357–368 (2002)

    Article  ADS  MATH  Google Scholar 

  9. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  10. Gao, T., Yan, F.L., Wang, Z.X.: Quantum secure conditional direct communication via EPR pairs. Int. J. Mod. Phy. C 16, 1293–1301 (2005)

    Article  ADS  MATH  Google Scholar 

  11. Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  12. Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Phys. Mech. Astron. 52(12), 1913–1918 (2009)

    Article  ADS  Google Scholar 

  13. Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)

    Article  ADS  Google Scholar 

  14. Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Li, Z.Q.: Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. Chin. Inf. Sci. 55(2), 360–367 (2012)

    Article  MathSciNet  Google Scholar 

  15. Tsai, C.W., Hwang, T.: Deterministic quantum communication using the symmetric W state. Sci. Chin. Phys. Mech. Astron. 56(10), 1903–1908 (2013)

    Article  ADS  Google Scholar 

  16. Tsai, C.W., Lin, J.: Fault-tolerant remote quantum entanglement establishment for secure quantum communications. Int. J. Theor. Phys. 55(7), 3200–3206 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers. Phys. Rev. A 72, 036302 (2005)

    Article  ADS  Google Scholar 

  18. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 72, 066301 (2005)

    Article  ADS  Google Scholar 

  19. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: Quantum exam [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360, 748–750 (2007)

    Article  ADS  Google Scholar 

  20. Qin, S.J., Wen, Q.Y., Zhu, F.C.: An external attack on the Brádler–Dušek protocol. J. Phys. B: At. Mol. Opt. Phys. 40, 4661–4664 (2007)

    Article  ADS  MATH  Google Scholar 

  21. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561–1563 (2008)

    Article  ADS  Google Scholar 

  22. Qin, S.J., Gao, F., Wen, Q.Y., Meng, L.M., Zhu, F.C.: Cryptanalysis and improvement of a secure quantum sealed-bid auction. Opt. Commun. 282(19), 4014–4016 (2009)

    Article  ADS  Google Scholar 

  23. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  24. Qin, S.J., Gao, F., Guo, F.Z., Wen, Q.Y.: Comment on Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair. Phys. Rev. A 82, 036301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  26. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  27. Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: Highly entangled states and entanglement distribution. J. Phys. A 40, 13407–13421 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Yin, X.F., Liu, Y.M., Zhang, Z.Y., Zhang, W., Zhang, Z.J.: Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state. Sci. Chin. Phys. Mech. Astron. 53, 2059–2063 (2010)

    Article  ADS  Google Scholar 

  29. Zhang, W., Liu, Y.M., Wang, Z.Y., Zhang, Z.J.: Preparation of multi-atom cluster state and teleportation of arbitrary two-atom state via thermal cavity. Opt. Commun. 281, 4549–4552 (2008)

    Article  ADS  Google Scholar 

  30. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)

    Article  ADS  Google Scholar 

  32. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  33. Wang, X., Liu, Y.M., Han, L.F., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication with high-dimensional quantum superdense coding. Int. J. Quant. Info. 6, 1155–1163 (2008)

    Article  MATH  Google Scholar 

  34. Han, L.F., Lin, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690–2694 (2008)

    Article  ADS  Google Scholar 

  35. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049–1052 (2005)

    Article  ADS  Google Scholar 

  36. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896–2899 (2006)

    Article  ADS  Google Scholar 

  37. Zhang, Z.J., Man, Z.X., Li, Y.: Improving Wójcik’s eavesdropping attack on the ping–pong protocol. Phys. Lett. A 333, 46–50 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Liu, J., Liu, Y.M., Cao, H.J., Shi, S.H., Zhang, Z.J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652 (2006)

    Article  ADS  Google Scholar 

  39. Han, L.F., Liu, Y.M., Shi, S.H., Zhang, Z.J.: Improving the security of a quantum secret sharing protocol between multiparty and multiparty without entanglement. Phys. Lett. A 361, 24–28 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Eavesdropping on quantum secure direct communication with W state in noisy channel. Commun. Theor. Phys. 49, 103–106 (2008)

    Article  ADS  Google Scholar 

  41. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett., 4729 (2000)

  42. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. J. Phys. 4, 43 (2002)

    Google Scholar 

  43. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for valuable comments. This research is supported by the Ministry of Science and Technology (MOST) of the Republic of China (ROC), Taiwan, under the Contract No. MOST 105-2221-E-006-162-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, SH., Lin, J., Tsai, CW. et al. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State. Int J Theor Phys 57, 1894–1902 (2018). https://doi.org/10.1007/s10773-018-3715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3715-5

Keywords

Navigation